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Abstract 

 Urbanization in the 21st century is increasingly shaped by distal flows of 

people, capital, and information across the landscape. In India, these flows are predicated 

on expectations informed by the propagation of information across social networks. 

Networks across rural-urban boundaries and between urban centers are a principle 

mechanism underlying migration and investment patterns. These patterns shape and are 

shaped by the growth of city-regions. Our driving research question is: How does the 

strength of signal propagation across social networks underlying spatial flows affect 

emergent patterns of urban land-use change? To examine this relationship, we developed 

an agent-based model of regional-scale urbanization for the extent of India on a spatially 

explicit grid derived from satellite data wherein we represent the dynamics of decisions 

made by: land developers, families, state governments, corporations, and property 

management companies. Decisions made by family agents are based on information 

propagated across an adaptive social network. We varied the probability of data 

transmission across the network to simulate the effects of strong and weak social 

networks on spatial patterns of urbanization. 

Introduction 

 Most of the projected urbanization in India is expected to occur over the next 

two decades (United Nations, 2012). This growth will account for roughly 16% of the 

global increase in urban population. Urban expansion is increasingly being shaped by 

distal flows of people, materials, and information across the landscape rather than local 

processes (Seto, 2012). The dynamics that underlie these flows in India have been rapidly 

changing since liberalization in 1991.  
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 Since liberalization, India has been undergoing a social and economic 

transition. Foreign direct investment has increased by several orders of magnitude over 

this period (Singh, 2005). With the influx of a multitude of new tertiary sector labor 

opportunities, the value of education has increased. The number of people investing in 

higher education has tripled on the interval between 1991 and 2005 (Agarwal, 2006). 

Many of these new labor and educational opportunities are located in major cities, 

drawing people from across the country (Seto, 2011). The simultaneous increase in 

skilled labor and desirable labor opportunities driven by multinational investment has 

been accompanied by an increase in the rate of migration from rural to urban and 

between urban areas. 

 The process of information and human capital moving across the landscape is 

facilitated by and results in the formation of social networks (Kossinets, 2006). In India, 

social networks are the principle mechanism by which information about housing and 

labor opportunities is propagated (Banerjee, 1981; Banerjee, 1984; Kerr, 2011).  The 

behavior of complex ad hoc networks is related to connectivity and conductivity 

(Newman, 2003). As a result, the pathways by which information is propagated across 

the network affects decisions made by families, and is affected by consequent decisions 

to relocate, for example. The adaptation of networks of flows, including information and 

human, is a mechanism by which cities are capable of self-organizing on a regional scale 

(Batty, 2008).  The formation and adaptation of these networks is a dynamic process that 

affects and is affected by the development of the urban environment. It is difficult to 

predict how properties of the network will affect the emergence of regional-scale 

urbanization because these networks are embedded in a complex system comprised of 
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economic, physical, and social subsystem. Our objective is to understand how the 

strength of signal propagation across the social networks underlying human and capital 

flows will affect emergent urbanization patterns.  

 Equilibrium models of urbanization are largely incapable of dealing with 

nonlinearities captured within long-time-scale system boundaries (Feigenbaum, 2003). 

This set of methodologies is incompatible with representing regional dynamics of 

urbanization – on this scale cities are open systems that exchange people, materials, and 

information nonlinearly (Allen, 1997). Dynamical models are capable of representing the 

underlying processes of urbanization with mechanisms for co-adaptation and evolution 

(Werner, 2007). Allen (1997) and Batty (2001), for example, have used dynamical 

models for land cover change but these models did not attempt to represent actual 

decision making processes or aspatial network formation. These models are useful in 

exploring the theoretical implications of urban networks, but offer no insight into the 

workings of actual cities.  

 Our approach is to approximate human decision-making (following: McNamara 

and Werner, 2008a,b); in a dynamical model to explore system stability and adaptability 

(Alberti, 2000). The output from this spatially explicit agent-based model will be used to 

assess how properties of social networks affect urbanization through adaptive 

socioeconomic systems. We will examine the effects of properties of network formation 

on patterns of urbanization. 

Model 

 The simulation is a spatially explicit model that represents the decision-making 

process of land developers, property managers, families, state governments, and 
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multinational corporations in India. These processes are categorized into modules by 

agent type to facilitate description. Each agent makes decisions, described in the sections 

below, to approximate decisions made by actors in the system on annual to decadal time 

scales.  

Grid 

 Decisions made by agents are represented on a spatially explicit grid. Land and 

property values within each cell are in equilibrium. Each cell represents a 1 km2 area. The 

grid is initialized with nighttime lights data (NTL) data from 2001 for the extent of India. 

NTL data has been used as a proxy for economic activity/urban intensity (Zhang, 2011). 

This dataset is transformed so that the total area of each cell is comprised of three 

components used in the model: cleared, residential, and commercial land-use types. The 

purpose of the transformation is to produce a grid for the simulation that is 

morphologically similar to urban areas in India. For the ith cell, cleared (l), residential (r), 

and commercial (c) areas are disaggregated from DN values: 

€ 

l =
1−DN( )
DNmax

, 

€ 

r = 1− l( )γ, 

€ 

c = 1− l( ) 1−γ( ) , 

and, 

€ 

γ =U[0,1]. 

The grid provides a spatial context for the scale of simulated development, however, it is 

not a predictive space and does is not interpretable as a map of future development. 
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Figure 1 Initial grid simulated from NTL data (2001). Each cell is comprised of open 
space (red), commercial (blue) and residential (green) components. 

The land in each cell can be owned in whole or in part by different land developer 

agents (see Land Developer Module below). As the agents convert cleared land to 

developed property, the average height of buildings of each type is updated to yield a 

total square footage value for each property type for each developer agent for each cell.  

 

Figure 2: Each cell on the grid has discrete spatial and market values. Sub-pixel attributes 
are continuously represented, including ownership and land-use footprint areas. 

Land Developer Module 

 Ten land developer agents are initialized with heterogeneous risk aversion 

coefficients. These developer agents choose from 400 different projections for the prices 
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of land and commercial and residential property in each cell. Land developer agents 

employ the model with the lowest variance plus small nonsystematic noise (Werner, 

2008). Each land developer agent evaluates the expected profit and risk of purchasing 

land and constructing buildings on each parcel of land. The demand for the number of 

areal units of a building for the ith agent in the jth tract is n (Gennotte and Leland, 1990; 

Feigenbaum, 2003): 

€ 

n =
pij h j

* − 1+ r( )C(h j
* )l jh j

*

ω iσ ij
2 , 

where 

€ 

p  is the projected price per square foot completed floor space in the jth cell, r is 

the safe rate of return, C is the cost function for the mean price per square foot of 

construction of a building with optimal height, 

€ 

h* . The cost function, C yields the 

average price of floor space construction as a power function of height, h, (Mann, 1992): 

€ 

C = p 1+α( )h .          (1) 

The price of land is l, 

€ 

ω  is the risk aversion coefficient for the ith land developer 

agent, and 

€ 

σ2 is the estimated variance of the price projection. The optimal building 

height, h*, is the numerical solution of: 

€ 

αh3 + h2 − l
p0 ln 1+α( )

= 0 . 

This function is the solution to the minimization of the average cost of construction per 

square foot including land price, l, which is a modification of equation 1 above: 

€ € 

C = p 1+α( )h +
l
h

. 

Agents appraise available property and invest in a portfolio of projects with the greatest 

cumulative demand that does not exceed a fixed annual budget.  
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 Developer agents acquire land from the state government through a competitive 

bidding process. For the jth parcel, the ith interested land developer agent submits a 

proposal for the quantity of land and a price, Gij: 

€ 

Gij = α i p j  

where pj is the current value of land at the jth parcel and

€ 

α i  is the bidding ratio employed 

by the ith agent. The state government distributes the full amount of land requested to 

bidders in order of highest bid until all available land in j is distributed. The optimal 

bidding amount is an infinitesimal increment greater than the second place bid for all 

cells. Agents track bidding errors with respect to the optimal bid, 

€ 

E . Agents adjust 

€ 

α  

adaptively to minimize bidding errors, both over and underbidding (Dasgupta and Das, 

2000): 

€ 

α t+1 = α t +δ t sign α t −α t−1( )sign Et−1 − Et( ),  

where, 

€ 

δ t = δ t−1ε
sign Et−1 −Et( ), 

and 

€ 

ε is a small constant parameter.  

Property Manager Module 

 Ten property manager agents invest in residential and commercial space on the 

grid and rent this stock to firm and family agents to maximize profit from both property 

speculation and rental revenue. Property manager agents project property values and 

rental rates across space using the same projection models as the land developer agents. 

The demand for the amount of property space by the ith property manager agent in the jth 

cell is n (Gennotte and Leland, 1990; Feigenbaum, 2003): 
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€ 

n =
Rij + pij − p j 1+ r( )

ω iσ ij
2 ,         

where 

€ 

R  and 

€ 

p  are the projected rental rates and property values for the next time 

step, respectively, and p is the current property value. Agents make offers on the optimal 

portfolio of properties within a fixed budget. When the demand for property exceeds 

supply, the fraction of available land awarded to the ith property manager agent, fi, is: 

€ 

fi =
ni
ni

i=1
∑

. 

Family Module 

 In the model, family agents make decisions about where to live and work in order 

to maximize income. All information used to make these decisions is propagated across a 

spatially explicit social network. Banerjee (1984) and Mitra (2004) describe 

informational remittances by immigrants to their hometowns as driving migration 

patterns. Propagation of information in the model represents both spatially local diffusion 

(through random interactions) and information shared about the current location of a 

family with the “home” cell where the family formed. Estimates for values on the grid are 

produced with an inverse distance weighted average (IDW) using available observations: 

€ 

u(x) =
χwi(x)u(xi)

w j (x)j=0

N
∑i=0

N

∑ , 

where, 

€ 

wi(x) = d(x,xi)
−1, 

and 

€ 

u(xi)  is the value of the ith observation, d is the distance between the ith cell and an 

arbitrary cell, x. The spatial interpolation available to family agents in the ith cell 
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incorporates observations at cells where family agents that originated in the ith cell are 

currently located. Interpolations for the ith cell are averaged (IDW) with local cells to 

account for information sharing. Observations with a weight less than 0.1 are ignored for 

computational efficiency.   

 IDW averages are propagated between cells where there is at least one family that 

originated and currently resides in either cell to represent informational remittances by 

families that move. These distal IDW averages are averaged with local IDW averages to 

incorporate both types of data. Averages used by agents in subsequent modules are 

generally limited to information that has been propagated across the network.  

 A dissipation parameter, 

€ 

χ, is varied between 0 and 1 and represents that 

probability that information is propagated across the network at the ith cell. When 

€ 

χ is 0, 

members of the same social network have perfect knowledge of all observations in the 

network. As 

€ 

χ approaches 1, the probability of each observation being diffused and 

propagated approaches 0. The variation of this parameter will be used to examine how 

the strength of social network signal propagation affects urbanization.  

 Migration is driven by a combination of push and pull factors (Kainth, 2010). A 

primary push factor is lack of economic opportunity. Family agents compare current 

aggregate income against average opportunities as informed by their respective social 

network. The income differential between current and expected opportunities, K, 

represents an estimate of push factors: 

€ 

K = H + e weRe∑ + n wnRn∑( ) − W + H( ) , 

where W is the current total wages earned by the family, H is the current rent paid for 

housing, e is the number of educated family members, and n is the number of non-
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educated family members. 

€ 

w  is the mean wage across the social network, 

€ 

R  is the 

mean employment rate across the social network, and the subscripts e and n denote 

educated and non-educated, respectively. 

€ 

H  is the mean rent across the social network. 

Family agents with positive K become prospective migrants.  

 Prospective migrant agents estimate the value of pull factors, B, for each cell on 

the grid: 

€ 

B = e weRe + n wnRn − H + m( ) , 

where 

€ 

m  is the IDW average of transportation cost, which is a linear function of 

distance between the ith cell and cells with labor opportunities. H is the rental cost in the 

ith cell and 

€ 

wR  is the IDW average of wages and employment rates in cells with 

employment opportunities neighboring the ith housing cell. Prospective migrants choose 

to move to the cell where B is maximized. In cases where the demand for rental space in 

a cell exceeds the available space, units are randomly distributed to applicants, and 

unsuccessful applicants do not move.  

Casual labor and retail sectors are significant segments of the Indian economy, 

and urban space consumers. In this version of the model, these segments are reduced to a 

linear scale with population density. For each person agent in a given cell, a demand for 

commercial space, dR, is: 

€ 

dR = αRK, 

where 

€ 

αR  is a conversion factor that relates total population in each cell, K, to the retail 

economies associated with that population. This demand draws on available commercial 

space and may affect the price of commercial space using the same mechanism for 

renting as for families, however, the source of money for rent is external. 
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 Education Module 

 Family agents are each comprised of subagent workers, which are defined by an 

age, skill level, and income.  Uneducated people subagents currently located in the ith 

cell calculate the expected value of investing in education using information propagated 

across their social network: 

€ 

B = L weRe − w[ ] − T , 

where the subscript 

€ 

we  is the mean wage for educated labor, 

€ 

Re  is the employment 

rate for educated. w is the current wage for the worked (unemployed workers use mean 

wage and employment rate estimates across the social network). L is the difference 

between current age and maximum working age, and 

€ 

T  is the mean tuition across the 

network. When B is positive and 

€ 

T < family agent capital, people subagents become 

prospective students.  

  Prospective students choose an optimal location for education by maximizing 

total income, I: 

€ 

I = L wR − T +H +m( ) , 

where 

€ 

wR  is the product of the IDW averages of post-graduate wage and employment 

rate for universities surrounding the ith cell. T, H, and m are the IDW averages of tuition, 

housing rent for an individual, and transportation costs in the ith cell. H is 0 for the cell 

where the corresponding family agent currently lives. m is a linear function of distance 

between the housing cell and the university cell. When the optimal cell is not coincident 

with the family agent, the prospective subagent nucleates to form a separate family agent 

and moves for school.  

IT and Manufacturing Firms 
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 This module represents decisions made by two types of representative firms: 

information technology and manufacturing firms. The model is initialized with ten of 

each type of agent with some initial capital. IT agents can produce a fungible technology 

good and manufacturing agents can produce a material good by investing in production 

space and hiring employees. Each firm agent computes the number of units of 

commercial space to purchase in every cell, n: 

€ 

n =
Pjψ − ψ L + R + jψµ( )

ωσ 2 , 

where P is the projected price per unit of good, j is the number of units that can be 

produced by an employee, 

€ 

ψ  is the number of employees that can be hired per unit 

commercial space, 

€ 

L  is the mean wage of labor in the neighborhood of the ith cell 

being considered for investment, R is the contemporaneous rent per unit area in cell i, 

€ 

µ  

is the cost of input material per unit, 

€ 

ω  is the risk aversion coefficient for each firm, and 

€ 

σ2 is the estimated variance of the labor cost projection. Each industry has only one input 

good and one output good and the prices associated with these are held constant and are 

not a function of space.  

 IT agents can only hire educated labor and manufacturing agents can hire either 

educated or uneducated labor. Each firm projects unitary labor costs using data on 

previous labor costs in the ith cell with a set of linear projection models. At each time 

step, firms reassess their economic activity in every cell in which they have operating 

facilities. Firms with unprofitable facilities release their leases and employees in those 

cells.  

State Government 
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 State agents make decisions about which cells to designate as development areas 

and investment in colleges. In this version, each state opens a small number of cells for 

development at the end of each time step. Each new cell must be contiguous to existing 

development cells. In future, this mechanism will incorporate a cost-benefit analysis to 

weigh the expected income from new development against costs associated with 

agricultural land and tax revenue loss.  

 State government agents also invest in college infrastructure. The optimal 

investment is dynamic and difficult to project, so agents use a hill-climbing algorithm to 

approximate an optimal strategy. The agents use an adaptive step algorithm optimize 

economic gains from revenue, H, by adjusting the annual budget for education 

investment, B (Dasgupta and Das, 2000): 

€ 

Bt+1 = Bt +δ t sign Bt − Bt−1( )sign Ht−1 −Ht( ),  

where, 

€ 

δ t = δ t−1ε
sign Ht−1 −Ht( ), 

and 

€ 

ε is a small constant parameter.  

 Each state assesses the investment potential at every cell within their boundaries. 

The demand for a unit of educational space, e, is: 

€ 

e = gD − R + zL( ) , 

where g is the number of students that can be trained per unit, D is the state-wide average 

lifetime differential in earning potential per person, R is the unitary rent in the ith cell, z is 

a constant number of educated laborers to be hired per unit and L is the wage rate for 

educated labor in the ith cell. State government agents distribute investments across cells 

with positive e proportionally to their relative e values.  
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Land and Property Markets 

 Land and property prices are endogenously determined in the model. Prices adjust 

dynamically as a function of demand, D, and supply, S, (Nicholson, 1995): 

€ 

dP
dt

= α p D − S( ) , 

where 

€ 

α p  is a constant of proportionality. 

Output 

 

Figure 3 Using a sparse sub-grid, the model is run over 15 time steps (top). The bottom 
pane shows the self-organization of social networks over the same time period. 

 Figure 3 shows the development of a sparse sub-grid in the model developing 

over 15 time steps. The simulation produces some patches that are commercial, 

residential, or a mix of development types. This behavior may depend on a fully scaled 

version of the model and is pending further analysis.  
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 Social networks are initialized with random nodes. The lower pane shows the 

self-organization of networks into coherent connections between clusters of urban areas 

on the grid by time step 15. Some parcels on the grid are not connected to the social 

network because families have not yet moved to these cells, which were developed 

rapidly in previous time steps.  

Next Steps  

The model encounters several computational bottlenecks associated with the 

social network diffusion algorithms that scale with the density of urban cells on the grid. 

These computations will be broken into several pieces for parallelization on the Yale 

High Performance Cluster. After this, the model will be capable of running on the entire 

extent of India for densities where the number of urban cells approaches the total number 

of cells.  

The fully scaled version of the model will be run with variations of the parameter 

controlling the dissipation of information across the social networks, 

€ 

χ. This parameter 

represents the connectivity of social networks, which is related to changes in social 

behavior. The variation in this parameter will be compared to time series of urbanization 

on the grid in terms of: land use change, land use type, fragmentation, and cell cluster 

size and contiguity. The model will be run over multiple random number generators to 

estimate the effect of stochasticity on the model results, and parameters with estimated 

values will be assessed with a sensitivity analysis. 
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