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A B S T R A C T

Background: Land use regression (LUR) models have been widely used to estimate air pollution exposures at high
spatial resolution. However, few LUR models were developed for rapidly developing urban cores, which have
substantially higher densities of population and built-up areas than the surrounding areas within a city’s ad-
ministrative boundary. Further, few studies incorporated vertical variations of air pollution in exposure as-
sessment, which might be important to estimate exposures for people living in high-rise buildings.
Objective: A LUR model was developed for the urban core of Lanzhou, China, along with a model of vertical
concentration gradients in high-rise buildings.
Methods: In each of four seasons in 2016–2017, NO2 was measured using Ogawa badges for 2 weeks at 75
ground-level sites. PM2.5 was measured using DataRAM for shorter time intervals at a subset (N= 38) of the 75
sites. Vertical profile measurements were conducted on 9 stories at 2 high-rise buildings (N=18), with one
building facing traffic and another facing away from traffic. The average seasonal concentrations of NO2 and
PM2.5 at ground level were regressed against spatial predictors, including elevation, population, road network,
land cover, and land use. The vertical variations were investigated and linked to ground-level predictions with
exponential models.
Results: We developed robust LUR models at the ground level for estimated annual averages of NO2 (R2: 0.71,
adjusted R2: 0.67, and Leave-One-Out Cross Validation (LOOCV) R2: 0.64) and PM2.5 (R2: 0.77, adjusted R2: of
0.73, and LOOCV R2: 0.67) in the urban core of Lanzhou, China. The LUR models for the estimated seasonal
averages of NO2 showed similar patterns. Vertical variation of NO2 and PM2.5 differed by windows orientation
with respect to traffic, by season or by time of a day. Vertical variation functions incorporated the ground-level
LUR predictions, in a form that could allow for exposure assessment in future epidemiological investigations.
Conclusions: Ground-level NO2 and PM2.5 showed substantial spatial variations, explained by traffic and land use
patterns. Further, vertical variation of air pollution levels is significant under certain conditions, suggesting that
exposure misclassification could occur with traditional LUR that ignores vertical variation. More studies are
needed to fully characterize three-dimensional concentration patterns to accurately estimate air pollution ex-
posures for residents in high-rise buildings, but our LUR models reinforce that concentration heterogeneity is not
captured by the limited government monitors in the Lanzhou urban area.
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1. Introduction

Land Use Regression (LUR) models have been widely used in recent
air pollution epidemiology studies because they can capture intra-urban
air pollution variations at high spatial resolution (Hoek et al., 2008).
However, few LUR studies have focused on urban cores, which have
substantially higher densities of population and built-up areas than the
surrounding suburban/rural areas in a city. An urban core usually ac-
counts for less than 20% of a city’s area, but has a population density
that is over 10 times higher than that of the surrounding areas in the
previous LUR studies (Chen et al., 2010a; Lee et al., 2017; Meng et al.,
2015; Wolf et al., 2017). The drastic differences in population density
and physical landscapes between the urban cores and surrounding areas
might lead to different air pollution sources and dispersions.

Previous LUR models showed different spatial predictors in the
urban cores and their corresponding metropolitan areas (including
urban cores and suburban/rural areas), even when the same monitoring
data or the same candidate predictors were used in Tianjin (Chen et al.,
2010a), Hong Kong (Lee et al., 2017; Shi et al., 2016), China, and New
York City (NYC) (Ross et al., 2007, 2013), USA. One possible ex-
planation is that the relationships between some spatial predictors and
air pollution concentrations might vary by different degrees of urba-
nicity. At the metropolitan level, comprehensive spatial predictors
characterizing the degrees of urbanicity were more likely to be in-
cluded, while at the urban-core level, specific types of pollution sources
or specific land use types were more likely to be identified. In NYC
(considered as an urban core) (Clougherty et al., 2013b), truck traffic (a
specific type of traffic) was included in addition to traffic-weighted road
density in the PM2.5 model (Ross et al., 2013), while in the NYC me-
tropolitan area (including surrounding counties), only total traffic was
included, and the contribution of truck traffic was not detected, al-
though it was offered as a candidate predictor (Ross et al., 2007). Si-
milarly, in the urban core of Hong Kong (~100 km2), three traffic-re-
lated variables (primary, ordinary road densities, and public vehicles)
were included (Shi et al., 2016), while in Hong Kong (1,106 km2), only
expressway length was included as a traffic-related variable in the
PM2.5 model (Lee et al., 2017). In addition, urban cores were shown to
have substantial spatial heterogeneity in air pollution levels (Apte et al.,
2017; Clougherty et al., 2013a).

Despite recent advancement in LUR models in China, especially at
the national level, most studies used government monitoring data
(Barratt et al., 2018; Chen et al., 2018a, 2018b; He et al., 2018; He and
Huang, 2018; Xu et al., 2018; Yang et al., 2018; Zhang et al., 2018). The
government monitoring network has sparse sampling sites and few sites
are near traffic (He et al., 2018; Xu et al., 2018), thus the government
monitors are not ideal to capture fine-scale variation of air pollution in
a city. To address these challenges, many European or North American
studies used purposefully designed monitoring networks to investigate
intra-urban variations of air pollution (Beelen et al., 2013; Eeftens
et al., 2012; Kanaroglou et al., 2005; Matte et al., 2013). In our pilot
study, we found that the limited government monitors (N=4) did not
capture the fine-scale spatial variation of NO2 in the Lanzhou urban
core based on measurements in summer 2015 (Jin et al., 2019). More
studies are needed to develop dense monitoring networks and models
with high spatial resolution, as they might be crucial to inform local
environmental health policies.

Few studies considered vertical variation of air pollution by building
height in exposure assessment, which might lead to exposure mis-
classification for urban areas with dense high-rise buildings (Barratt
et al., 2018). To the best of our knowledge, two previous studies in-
corporated vertical variations in the ground-level exposure models
(Barratt et al., 2018; Ho et al., 2015). Barratt et al. measured PM2.5 and
Black Carbon (BC) at 4 different heights ranging from 0 to 50m (~20th
floor) in 6 locations of Hong Kong, which were used to estimate an
average exponential decay rate that was applied to the entire city for
derivation of the ground-level LUR model predictions. Ho et al.

measured PM2.5 at 30 sampling sites with 3 categories of heights (1–3,
4–6, and 7–9 floors) in Taiwan, and the heights were included as a
categorical variable in the LUR model. No previous study has estimated
vertical variation for NO2 exposures, which might be very different
from PM2.5 or BC, given their distinctly different near-road decay pat-
terns (Karner et al., 2010). Furthermore, no study has investigated
whether the vertical variations of air pollution differ by the window
orientation with respect to traffic, which might lead to exposure mis-
classification for residents living in an apartment facing away from a
street. Our study will be the first to incorporate NO2 vertical variation
in exposure models, to investigate the impacts of window orientation
on vertical variations, and to take measurements at shorter intervals
vertically up to the 32nd floor in an attempt to more accurately char-
acterize the vertical variations.

In addition, previous studies focusing on vertical dispersions
showed a wide range of decay rates: 4%–35% decreases in PM2.5 con-
centrations from the ground level to the 11th floor (Chan and Kwok,
2000; Wu et al., 2002, 2014). These trends relate in part to the local vs.
regional source contributions to ground-level concentrations, as well as
the built environment and dispersion dynamics. The varying results on
vertical profiles of air pollution in different urban settings highlights the
need of additional research and for local studies. Our study provided
the first observation on vertical variations of air pollution in Mainland
China, which have different pollution sources, built environment
characteristics, and meteorological conditions than the previous study
areas where vertical variations were reported.

This study addresses several research gaps in LUR modeling, and
develops LUR models incorporating vertical variations of air pollution
in the Lanzhou urban core, in a form that could allow for exposure
assessment in future epidemiological investigations.

2. Material and methods

In this study, we investigated the spatial and seasonal variations of
air pollution at the ground level and vertical variation by building
height, and developed LUR models and predictive models of vertical
concentration gradients in the Lanzhou urban core. In our pilot study,
we developed a pilot LUR model based on NO2 measurements at 47
ground-level sampling sites in 2015 summer (Jin et al., 2019). In this
study, we will expand our pilot work by adding more sampling sites (75
ground sites and 18 building sites), and sampling more pollutants (NO2

and PM2.5) in four seasons of 2016–2017.

2.1. Study area and spatial data collection

The urban core of Lanzhou is a river valley with the highest popu-
lation and traffic densities in the city (Fig. 1). The urban core of
Lanzhou is shown in the administrative map (Fig. S1). With high
mountains surrounding the valley, the atmosphere is usually stagnant,
leading to poor air quality in the valley (Zhang and Li, 2011). The urban
core includes four administrative districts with various degrees of ur-
banicity and differing topography: 1) Chengguan District, in the eastern
side of the valley that is wider, flatter, and more developed than other
districts, with high densities of population, roads and businesses; 2)
Anning District, in the north, a relatively new residential area with
some industrial sites in the west end of the district; 3) Qilihe District, a
hilly area in the south that is under development; and 4) Xigu District,
in the west, an industrial area (e.g., power plants and cement factories).
Pollution source profiles of particulate matter were reported to vary
within the study area; the contribution of traffic was almost 5 times
higher in the east than the west, while the contributions of soil dusts
and industry emissions were almost twice as high in the west compared
to the east (Qiu et al., 2016). Many apartment buildings are more than
30 floors and have mixed window orientation in relation to roadways.
Chengguan District has the highest density of high-rise buildings.

We collected spatial information necessary for LUR development,
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including road network, land cover, land use, elevation and population
density. The sources of these datasets were detailed in our pilot study,
in which we developed a LUR model for NO2 based on measurements in
a single season at fewer sampling sites compared to this study (Jin et al.,
2019). During the sampling campaigns, air pollution concentrations
measured by the national regulatory monitoring network and meteor-
ology information were obtained from the China Environment Mon-
itoring Center and China Meteorological Administration.

2.2. Monitoring network design and sampling timeframe

The monitoring network at the ground level includes 75 sampling
sites for NO2 and 38 for PM2.5 (Fig. 2). These sites were selected to
ensure capturing wide ranges of spatial characteristics and expected air
pollution variations. In the pilot study, we selected 47 sampling sites
using stratified-random sampling followed by purposeful selection in
gaps of spatial coverage and predictor distributions (Jin et al., 2019).
Based on the pilot measurements at the 47 sites in 2015 summer, we
developed a statistical simulation procedure to select additional 28 sites
in areas with low monitor density to improve simulated prediction
performance (Berman et al., 2019). The sampling sites for PM2.5 are a
subset of the sites for NO2, with all PM2.5 measurements collected
within 200m of the NO2 sampling sites for logistical reasons.

To capture vertical variation in air pollution levels, we took mea-
surements at two selected buildings in residential building complexes
(Fig. 2). Monitors were deployed outside the windows of hallways.
These windows were facing towards traffic in one building and facing
away from traffic in another building. In each building, 9 sites were
approximately evenly distributed from the 1st to the 32nd floors (i.e.,

floors 1, 4, 8, 12, 16, 20, 24, 28, and 32). The heights of the monitors
from the ground level were measured using a laser distance measure
(Bosch GLM35). The building height was similar between the two
buildings where vertical profile measurements were collected. Each
floor was ~3-m tall, while the first floor (lobby) was slightly taller than
other floors. The vertical decay of PM2.5 and BC was reported not to
significantly differ by street canyon physical parameters in Hong Kong
based on measurements in a wide range of street configurations (i.e.,
street canyons and open streets, aspect ratios ranging from 1.1 to 7.4,
and traffic density from low to high) (Barratt et al., 2018). In this
present study, we investigated an aspect of building configurations
(window direction in relation to roadways) and its impact on estimated
vertical variations of air pollution, which was not considered in pre-
vious studies but could be important for evaluating population ex-
posures.

The sampling campaigns for NO2 were conducted for 2 weeks in
each of 4 seasons from 2016 spring to 2017 winter. The specific dates
for sampling were selected to be representative based on previous
government monitoring data (Henderson et al., 2007). For the winter
period, the sampling started 2 weeks earlier than the predetermined
date to avoid the Chinese New Year celebration, which usually lasts
~10 days and influences transportation patterns around the celebration
time. The final sampling periods at ground level were: 1) April 19-May
3, 2016; 2) July 14-28, 2016; 3) October 14-28, 2016; and 4) January 3-
17, 2017. The vertical profile monitors at the buildings were deployed
and collected one day after the ground sites. PM2.5 was measured at the
same time when NO2 was sampled, but for the vertical profile mea-
surements, PM2.5 measurements were only conducted in summer, fall
and winter due to logistical challenges (lack of access to the buildings

Fig. 1. Lanzhou city and the urban core situated in a valley.
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during the spring sampling campaign).

2.3. Monitor deployment for NO2 and PM2.5

NO2 was sampled using Ogawa badges with shelters to avoid sun
and rainfall. The microenvironment of potential sampling locations was
investigated before installation to ensure the safety of the badges and a
free circulation of air around the badges. The badges were installed at
least 2.5m above ground, 30 cm (cm) away from walls at the ground
level, and 10 cm from walls at building sites for safety concerns. Field
blanks (2 filters) went through the same processes of deployment,
transportation and experiment with the samples. The Ogawa badges at
the ground level were deployed within 12 h of the first day of each
sampling period, and were collected 2 weeks later on the same day. The
schedule for deployment and collection of the badges at building sites
was a day later than the ground sites. Ogawa pads were analyzed using
Ion Chromatography (Demokritou et al., 2001; Gaffin et al., 2017). The
measured nitrite concentrations in the extracted solutions were con-
verted to gas concentrations considering the dilution factor and the
diffusion coefficient under relative humidity and temperature in the
study area during each sampling period.

PM2.5 was estimated using measurements from a DataRAM pDR-
1000 (Thermo-MIE Inc., Smyrna, GA). This handheld portable device is
a passive nephelometer measuring light scatter from fine particles in
the range of 0.1–1 μm, which have been shown to be highly correlated

with PM2.5 mass concentrations measured by gravimetric methods (i.e.,
Harvard Impactors) (Liu et al., 2002; Quintana et al., 2000). The
readings from the monitors were converted to PM2.5 mass concentra-
tions based on their established relationship under specific meteor-
ological conditions (Liu et al., 2002).

A mobile strategy was used to collect PM2.5 measurements, as there
were not sufficient monitors to deploy at all sites concurrently (Larson
et al., 2009). Generally, a “mobile” monitor visited each site system-
atically, and then the measurements were temporally adjusted by
government monitoring data or measurements from an “anchor”
monitor during the same sampling periods. The “anchor” monitor was
the same as the mobile monitor, both of which are the DataRAM pDR-
1000 mentioned above. Before deploying in the field, they were both
zeroed with Z-pouches. They were also run side-by-side for 30min
before the sampling and showed good agreement (correlation coeffi-
cient: 80%). We assume that adjusting for the measurements of the
“anchor” monitor can reasonably remove the temporal variations in the
measurements of the mobile monitor, allowing for the investigation of
variations at different sampling sites measured by the mobile monitor.
At the ground level, the “mobile” monitor visited the sampling sites
(N= 38) sequentially from 4 to 7 pm on ~5 days in each season. At
each sampling site, the “mobile” monitor traced the patterns in Fig. 3 to
capture the ambient pollution levels. The “mobile” measurements were
adjusted using the following equation: = ×Adj M Mi i

Ave
Gi
, where Mi is

the average “mobile” monitor measurements at the ithsite, and Gi is the

Fig. 2. Sampling sites for NO2 (N=75) and PM2.5 (N=38) measurements, including two selected building sites for measuring vertical variation.
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government monitor measurements during the sampling period at the
ith site, and Ave is the average concentrations of government monitoring
data during all sampling periods of a season. For vertical profile mea-
surements, one “mobile”monitor was run for 5min on each floor, while
another “anchor” monitor was run on a fixed floor at the same time.
The measurements were conducted during morning rush hours
(8:30–9:30 a.m.) and afternoon non-rush hours (2:30–3:30 p.m.) on ~6
days in each season. The mobile measurements were adjusted for

temporal changes using the following equation: = ×
∑

Adj M Mi i
A

A
/ 9i

i
1
32

,

where Mi is average “mobile” monitor measurements at the ith floor,
and Ai is average “anchor” monitor measurements during the sampling
period at the ith floor, and ∑ A /9i1

32 is the average concentrations in the
“anchor” monitor during sampling from the 1st to the 32nd floor
( =i 1, 4, 8, 12, 16, 20, 24, 28, 32).

2.4. Developing LUR models incorporating vertical variation

The ground-level measurements of NO2 and PM2.5 were regressed
against spatial predictors to explain variability in air pollution con-
centrations at the ground level. The development of the spatial pre-
dictors was described in our previous work which reported our pilot
measurements at fewer sampling sites in one season (Jin et al., 2019).
Briefly, a total of 17 categories of variables with buffers up to 2000 m
were developed, including an indicator of administrative districts, po-
pulation density, elevation, land use, land cover, distance to major
roads, road density, and restaurant density. A complete list of the
spatial predictor variables is provided in Table S1.

Linear regression models were first developed for 6 response vari-
ables: annual average NO2 concentrations, averages of NO2 con-
centrations for each season, and annual average PM2.5 concentrations.
Outliers (> 3 standard deviations away from the mean) as well as void
samples due to accidents or errors in deployment or experiment were
excluded from subsequent analysis. For some predictors with very
skewed distributions, transformations were used. The models were se-
lected using: 1) supervised stepwise selection with adjusted R2 as the
primary criterion, similar to European Study of Cohorts for Air
Pollution Effects (ESCAPE) (Beelen et al., 2013; Eeftens et al., 2012),
and 2) stepwise selection in both directions using the Akaike Informa-
tion Criterion (AIC) as the main criterion. Additional criteria for model
selection include: 1) coefficients are in the anticipated direction, and 2)
p-values for the coefficients are less than 0.2.

For the best model at this stage, assumptions of linear regression
models were checked using residual plots. Multicollinearity was as-
sessed using the variance inflation factor (VIF) (James et al., 2013). The
model was validated using the leave-one-out cross validation (LOOCV)
method, which was shown to be consistent with k-fold cross validation
in our pilot measurements. The LOOCV R2 was computed based on Root
Mean Squared Error (RMSE) of prediction at the hold-out sites with the
following formula: − RMSE Var observations1 ( ˆ2)/ ( ) (Young et al.,
2016). Influential points with high Cook’s distance were identified, and

excluded to evaluate the improvement of regression models. After ex-
cluding an influential point, the model selection procedure was re-
peated. Additionally, NO2 concentrations were log-transformed due to a
skewed distribution and non-constant variance of the model residuals.
The above model selection processes were repeated for log-transformed
NO2 concentrations as a response variable. The residuals of the final
model were investigated for spatial autocorrelation using a semivario-
gram analysis.

Universal kriging models were developed for the 6 response vari-
ables (annual average, 4 seasonal averages of NO2, and annual average
of PM2.5) using ground level data. The universal kriging models have
the following form: = + +βY s s w s ε s ε s τx( ) ( ) ( ) ( ), ( )~N(0, )i i i i i

T 2 ,
where Y s( )i is the air pollution concentration at location si (latitude/
longitude); βsx( )i T is the mean concentration determined by the vector
of spatial predictors at location si ( sx( )i are the variables listed in Tables
2 and 3, that are the spatial predictors included in the linear regression
models); w s( )i is a spatially correlated random effect accounting for
small scale spatial variability; and ε s( )i is independent random mea-
surement error assumed to follow a normal distribution with mean zero
and variance τ2. The spatially correlated random effects are modeled
using a multivariate normal distribution, centered at zero, with var-
iance/covariance matrix defined by an isotropic correlation function
(i.e., correlation depends only on distance between locations) such that

= −w s w s σ ρ s s φCov( ( ), ( )) ( ; )i j i j
2 where ρ φ(.; ) is the selected isotropic

correlation function, σ2 is the variance of the spatial process, and φ
describes the strength of spatial correlation in the data. We considered
multiple options for ρ φ(.; ) including the exponential and Gaussian
functions (Banerjee et al., 2004; Diggle and Ribeiro, 2007). All models
were fitted using the likfit function of the GeoR R package (Ribeiro and
Diggle, 2001) where all model parameters were simultaneously esti-
mated using maximum likelihood estimation. Empirical semivario-
grams were calculated and plotted in order to visualize the spatial
correlation in the data and to determine starting values for the model
fitting algorithm. The kriging models were compared with the linear
regression models based on AIC and LOOCV Mean Squared Error (MSE)
for each response variable (annual average, seasonal averages of NO2,

Fig. 3. Mobile monitoring routes at ground sites for PM2.5 measurements (a, site that is near a crossroad; b, site that is near a 3-way intersection; c, site that is not
near an intersection). Note: The stars represent the sampling sites under different scenarios and an arrow represents 1-min walking distance.

Table 1
Summary statistics of air pollution concentrations measured by study monitors
at 75 monitoring sites for NO2 and 38 monitoring sites for PM2.5 in Lanzhou,
China.

Air pollution concentrations (μg/
m3)

Mean Median SD IQR Min Max

Annual average NO2 65.9 62.2 15.7 23.2 42.6 108.2
Spring NO2 60.4 56.0 16.8 24.3 34.6 101.4
Summer NO2 57.8 53.6 17.8 27.6 29.9 100.8
Fall NO2 62.2 61.1 13.5 18.7 39.4 98.4
Winter NO2 84.0 81.7 17.8 24.9 54.2 135.2
Annual average PM2.5 74.7 71.0 18.2 21.0 43.8 112.4

Note: NO2 was measured during a 2-week period in each season, and PM2.5 was
measured from 4 to 7 pm in each season.
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and annual average of PM2.5).
Vertical profile measurements conducted in the two buildings were

plotted against increasing floors (1st- 32nd floors), which were com-
pared between the windows facing toward and facing away from traffic.
For NO2, we investigated the vertical decay patterns of annual average
concentrations, and whether the patterns changed across seasons. For
PM2.5, we investigated the vertical variations of annual average con-
centrations and whether the variations differed between morning rush
hours and afternoon non-rush hours. The vertical variations were
characterized using polynomial regression models and exponential
models. Exponential models depicting a more rapid decay in the lower
floors were applied in previous studies on vertical dispersion (Barratt
et al., 2018; Chan and Kwok, 2000; Li et al., 2007; Vardoulakis et al.,
2002). Polynomial regression models were also investigated due to
their flexibility. The vertical profiles were developed based on both
floor numbers and building height. The profile for floor numbers can be
useful in exposure assessment because study subjects usually do not

know the height of their apartments from the ground, but can easily
report their floor. To merge the vertical profiles with the ground-level
LUR model, vertical variation functions were proposed to have the
following forms. For exponential models, =C C khexp( )h 0 , where Ch is
the air pollution concentration at h m from ground or floor number h,
C0 is the concentration at ground level, k characterizes variations of air
pollution with increasing building height which may differ by window
directions (if k <0, air pollution decays as building height increases).
For polynomial regression models, − =C Ch 0

+ + + …+β β h β h β h ,n
n

0 1 2
2 where …β βn0 are estimated parameters for

…h hn. The final model will be selected based on adjusted R2, AIC and
cross-validation MSE.

3. Results

3.1. Summary of air pollution measurements at the ground level

Among the 300 NO2 samples (75 samples/season * 4 seasons), 5
samples were voided due to accidents (1 lost and 1 broken in spring),
deployment error (2 in winter) or experimental error (1 in summer).
One outlier was identified in winter measurements (> 3 standard de-
viations away from the mean). Among the 152 measurements of PM2.5

(38 measurements/season * 4 seasons), one outlier was identified in
each season except for winter. The voided samples and outliers were
excluded from the following analyses. Summary statistics of measured
air pollution concentrations are shown in Table 1. NO2 concentrations
in winter were significantly higher than in other seasons (p < 0.001).
The distributions of annual and seasonal averages of NO2 and annual
average of PM2.5 were right-skewed.

The NO2 concentrations measured by government monitors during
the sampling periods showed seasonal patterns consistent with the
sampled concentrations (Table S2). The annual averages of NO2 and
PM2.5 measured by the government monitors were 10 and 20 μg/m3

lower than those measured by the study monitors during the sampling
periods, respectively. One possible reason for the difference in the
concentrations measured by the government and study monitors is the
different sampling methods (GB3095-2012, 2012). Near-roadway sites
were also oversampled relative to government monitor deployment.
Further, ground-level PM2.5 was measured by the study monitors in the
afternoon from 4 to 7 pm, whereas the government monitors measured
daily concentrations, which could contribute to the higher levels ob-
served in the study monitors.

3.2. NO2 variations at ground level

The coefficients of the final linear regression model for logged

Table 2
Linear regression model for annual average NO2 concentrations (μg/m3; log
transformed NO2 concentrations).

Variables β SD VIF p-value

Categorical major roada density within
100m (1: ≥75%; 0: < 75%)

0.19 0.042 1.54 < 0.001

Slope (degree) −0.032 0.0071 1.29 < 0.001
Area of cultivated land within 1000m

(kmb)
−0.10 0.025 1.47 < 0.001

Districtb: Chengguan 0.13 0.042 1.49 0.002
Qilihe 0.10 0.047 – 0.032
Xigu −0.031 0.057 – 0.592
Major road density within 1000m (km/

kmb)
0.044 0.017 1.06 0.008

All roads density within 100m (km/kmb) 0.0055 0.0023 1.48 0.020

a Major roads are highway, national, provincial, and county-level roads.
b The reference of the district variable is Anning District.

Table 3
Linear regression model for annual average PM2.5 concentrations.

Variables β SD VIF p-value

District: Chengguan −9.6 3.9 1.10 0.020
Qilihe 22 4.9 – <0.001
Xigu −5.1 5.8 – 0.393
Area of industrial land within 2000 m (km2) 4.5 1.4 1.33 0.003
Average elevation within 2000 m (m) 0.10 0.042 1.09 0.021

Note: The reference of the district variable is Anning District.

Fig. 4. Predicted annual average NO2 concentration (μg/m3) from the linear regression model, and comparison of measured and predicted log average NO2 con-
centrations (μg/m3) at holdout sampling sites. Note: 1) the measurements were from the 75 ground-level sampling sites; and 2) one sampling site was omitted each
time to develop a model (against the same set of predictors) to predict the concentration at the omitted site.
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annual average NO2 concentrations are shown in Table 2. The final
linear model has an R2 of 0.71, an adjusted R2 of 0.67, RMSE of 0.134,
and a LOOCV R2 of 0.64 (Fig. 4). The low VIF values of the final model
predictors indicate a lack of multicollinearity. The residual plots and
marginal plots show that the model was a good fit for predicting annual
average NO2 (Figs. S2 and S3). Three influential observations with
highest Cook’s distance were excluded due to substantial improvement
in the model fit.

Annual average NO2 concentrations were significantly higher in the
Chengguan and Qilihe Districts, compared to the Anning District. NO2

concentrations significantly decreased with increasing slope or area of
cultivated land. The cultivated land variable was developed based on
land cover categories by GlobeLand30 (Chen, 2010; Jun et al., 2014).
NO2 concentrations were positively associated with multiple predictors
of road density, which characterized different aspects of the road net-
work and their impacts on the distribution of traffic pollution (Fig. S4).
The predicted annual average NO2 concentrations are mapped in Fig. 4.
The range of predicted annual average NO2 concentrations was 96 μg/
m3, consistent with the measurements across the 75 sampling sites
(Table 1) and much higher than the range of measurements from the 4
government monitors (9.5 μg/m3).

Fig. 5 shows that after controlling for the spatial predictors, the
degree of spatial correlation among the NO2 measurements decreased
substantially (effective spatial range decreased from 2404 to 766m).
The covariance parameter estimates (determining the shapes of semi-
variograms) with and without controlling for the spatial predictors are
shown in Table S3. The flat semivariogram with controlling for the
spatial predictors indicates an absence of residual spatial autocorrela-
tion in the linear model. While the coefficient estimates of the spatial
predictors were similar between the linear regression and universal
kriging model (Table S4), the linear model performed better based on
its lower AIC (−82.8) and lower LOOCV MSE (0.0180), compared to
the universal kriging model (AIC: 79.2, LOOCV MSE: 0.0183).

The spatial patterns of NO2 were similar across seasons with the
highest concentrations in winter (Fig. 6). The models for seasonal
averages of NO2 showed similar prediction performance with slightly
lower cross-validation R2 (Table S5). The predicted and measured NO2

concentrations were highly correlated in all seasons with correlation
coefficients ranging from 0.74 to 0.85 (Fig. S5). The strongest pre-
dictors for all seasons are area of cultivated land and major road density
within 100m (p < 0.05). District indicator was also included in all
seasonal models (p < 0.2), but it was a stronger predictor in summer
and winter (p < 0.05). Area of industrial land was a significant pre-
dictor only in winter (p < 0.01).

3.3. p.m.2.5 variations at ground level

The final model for PM2.5 is shown in Table 3. The final model has
an R2 of 0.77, adjusted R2 of 0.73, RMES of 9.6, and LOOCV R2 of 0.67
(Fig. 7). The VIF values of the predictors indicate no multicollinearity
issues. PM2.5 concentrations were substantially higher in the Qilihe
District than other districts. The area of industrial land within 2000 m
and average elevation within 2000 m were associated with increased
PM2.5 concentrations. The predicted PM2.5 concentrations for the linear
model are shown in Fig. 7.

After adjusting for the spatial predictors (in Table 3) the spatial
correlation in the measurements decreased substantially: effective
spatial range decreased from 4744 to 598m. The semivariograms and
covariance parameter estimates with and without adjusting for spatial
predictors are shown in Fig. S6 and Table S3. The flat semivariogram of
the universal kriging model indicates an absence of spatial auto-
correlation in residuals of the linear regression model. While the coef-
ficient estimates of the spatial predictors were similar between the
linear regression and universal kriging model (Table S6), the linear
model (AIC: 259; LOOCV MSE: 92.9447) performed slightly better than
the universal kriging model (AIC: 263; LOOCV MSE: 92.9448).

The residual plots and marginal plots showed a good fit with the
data for the linear regression model (Figs. S7 and S8). Three influential
points with the highest Cook’s distance were excluded due to sub-
stantial improvement in the model fit. Two out of the three influential
points were located near construction sites, but spatial data to char-
acterize all the construction sites in the city are unavailable, thus the
model underestimated the PM2.5 concentrations at these two locations.

3.4. Vertical variations of NO2 and PM2.5 concentrations

The vertical variations of NO2 and PM2.5 differed by window or-
ientation with respect to traffic, and also showed temporal differences.
For windows facing traffic, the NO2 estimated annual average con-
centrations decreased 18% from the 1st (3.2 m) to the 32nd floor
(124.2 m). A significant decrease in the estimated annual average NO2

concentrations with increasing height was observed for windows facing
traffic (p: 0.002), but not for windows facing away from traffic (p:
0.167) (Fig. 8). The final models for vertical decay patterns of NO2

represent exponential forms due to their lower AIC and cross-validation
MSE (Table 4). Despite higher R2, polynomial regression models
showed high cross-validation prediction error especially for more
flexible models (with higher degrees of freedom), indicating overfitting
the data (Fig. S9). The vertical variations in NO2 showed seasonal

Fig. 5. Semivariograms of annual average NO2 concentrations (logged) with and without controlling for spatial predictors included in the linear models.
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patterns (Fig. 8). In general, winter had the highest concentrations
while summer had the lowest concentrations. For windows facing
traffic, the vertical decay rate was lowest in winter (k=−0.002 per
floor) compared to k=−0.011, −0.008, and −0.007 for spring,
summer and fall, respectively. Fall and winter measurements showed
similar fluctuation patterns along the estimated decay trends with
higher fluctuations in winter.

A significant decrease in annual average PM2.5 concentrations with
increasing height (i.e., floors or building height) was observed for
windows facing away from traffic (p: 0.016), but not for windows fa-
cing traffic (p: 0.853), which contrasts with NO2 models (Fig. 9). Si-
milar to NO2, exponential PM2.5 models showed the best fit. For

windows facing away from traffic, the PM2.5 annual average con-
centrations decreased 9.3% from the 1st (2.1 m) to the 32nd floor
(114.1 m). For both window directions, the PM2.5 concentrations in the
morning rush hours significantly decreased with increasing height at a
similar decay rate (Fig. 9). Decay rates were similar between summer
and winter (k=− 0.006), but an increasing trend of PM2.5 with in-
creasing height was observed for windows facing traffic in fall (Fig.
S10).

4. Discussion

In this study, we found substantial spatial variation of NO2 and

Fig. 6. Seasonal averages of NO2 concentrations (μg/m3) predicted by linear regression models.

Fig. 7. The predicted annual average PM2.5 concentrations (μg/m3) from the linear regression model, and comparison of measured and predicted annual average
PM2.5 concentrations (μg/m3) at holdout sampling sites. Note: 1) the measurements were from the 38 ground-level sampling sites; and 2) one sampling site was held
out each time to develop a model (against the same set of predictors) to predict the concentration at the holdout site.

L. Jin, et al. Environmental Research 177 (2019) 108597

8



PM2.5 concentrations predicted by the LUR models across different
seasons, while limited government monitors showed little spatial var-
iation in the pollution levels in Lanzhou urban core. Using the LUR
models might improve exposure assessment in future air pollution
epidemiology studies in Lanzhou, compared to using government
monitors alone.

The final LUR models were a good fit for the measurements, ex-
plaining 71% and 77% of the variance in the measured NO2 and PM2.5

in this study area, respectively, which were higher than the explained
variance by the LUR models developed in the other 2 Chinese urban
cores: 51% for an NO2 model in Changsha, and 63% for a PM2.5 model
in Hong Kong (Liu et al., 2015; Shi et al., 2016). The explained variance
in this study were within the general ranges of R2 in previous LUR
studies worldwide: 0.54–0.92 for NO2, and 0.49–0.89 for PM2.5 (Beelen
et al., 2013; Chen et al., 2010a, 2010b; Clougherty et al., 2008; Cordioli
et al., 2017; Eeftens et al., 2012; Gilbert et al., 2005; Huang et al., 2017;
Lee et al., 2014, 2017; Meng et al., 2015; Rahman et al., 2017; Ross

et al., 2006, 2013; Shi et al., 2017; Wolf et al., 2017; Wu et al., 2015).
We found that linear regression models performed slightly better than
universal kriging models in this study area, which is consistent with low
spatial autocorrelation (Moran’s I) in the model residuals in some
previous studies (Chen et al., 2010b; Cordioli et al., 2017; Lee et al.,
2017; Meng et al., 2015; Wu et al., 2015). However, this finding con-
trasts to air pollution predictions at the continental level in some stu-
dies, where universal kriging outperformed LUR models across main-
land China, contiguous US, and the European Union (Beelen et al.,
2009; Young et al., 2016; Zhang et al., 2018). This difference in per-
formance may be partially explained by the broader geographic cov-
erage of the predictions in these studies.

The distribution of predicted NO2 concentrations closely followed
the road networks in the study area. In the final LUR models for NO2,
three traffic-related predictors were included to characterize the im-
pacts of different aspects of road networks on NO2 concentrations. Area
of cultivated land within 1000m was significantly associated with

Fig. 8. Vertical measurements and fitted exponential models for NO2 annual average concentrations (panels 1 and 2), and seasonal changes of vertical variations of
NO2 annual average concentrations (panels 3 and 4). Note: k is the decay rate in an exponential model (Section 2.4), and gray areas are 95% confidence intervals.

Table 4
Comparisons of models for vertical decay of NO2 estimated annual average concentrations with increasing floors.

Models Adjusted R2 AIC LOOCV MSE 3-fold cross validation MSE

Exponential 0.732 −28.093 0.002 0.002
Polynomial (df= 2) 0.804 39.924 6.875 10.912
Polynomial (df= 3) 0.822 39.443 14.538 29.216
Polynomial (df= 4) 0.985 16.913 1.834 384.154
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lower NO2 levels, which was not observed in our pilot study with a
subset of the sampling sites in this study (N=47) (Jin et al., 2019).
Compared to the pilot study, this study included additional sampling
sites in areas on the edges of the city, where more cultivated lands were
located. The range of the predictor for cultivated land (area of culti-
vated land within 1000m buffer) at the sampling sites (N=75) in this
study doubled that in our pilot study at 47 sites (Fig. S11). This de-
monstrates the importance of purposeful design of monitoring networks
for fine-scale LUR models.

The distribution of predicted annual average PM2.5 showed different
spatial patterns than NO2 in the study area. The indicator of adminis-
trative districts was the most significant predictor with the highest ef-
fect estimates in the PM2.5 model. Compared to Anning District (a
newly developed residential district), Qilihe District had significantly
higher predicted PM2.5 concentrations, which could be driven by the
development of a High-tech Industrial Development Zone in this dis-
trict. This Development Zone (~8 km2) was located in a flat isolated
area on a hill. For its development, a series of construction sites have
been developed for building high-tech industrial parks, business centers
and related residential buildings since 2010 (Li and Deng, 2009).
Construction was ongoing during the sampling campaigns. No spatial
information was available to accurately depict the specific spatial area
of the development zone. The lack of detailed spatial information on the
development in Qilihe District might be the reason why the district
indicator was the strongest predictor in the PM2.5 LUR model, thus the
PM2.5 prediction surface shows discontinuities. However, we believe

that our PM2.5 LUR model can capture the spatial variations in PM2.5

exposures in the study area; and more importantly, the model is in-
formative for the local government, allowing it to effectively allocate
resources for controlling PM2.5 in the most polluted area. In addition,
the modeling framework being used in the present study can in-
corporate finer scale spatial information, if it becomes available in the
future.

Similarly, different patterns between PM2.5 and NO2 were also re-
ported in other Chinese cities (Huang et al., 2017; Lee et al., 2017). In
contrast, predicted PM2.5 and NO2 showed similar patterns in NYC,
where a high-to-low gradient was shown from the central borough of
Manhattan to the surrounding boroughs (Ross et al., 2013). Our finding
that the PM2.5 distribution was more spatially homogeneous than NO2

is consistent with some previous studies (Huang et al., 2017; Lee et al.,
2017; Wolf et al., 2017), as NO2 has fewer regional sources and is
dominated by local combustion sources.

Our finding that vertical variations of air pollution differed by
windows orientation with respect to traffic, to the best of our knowl-
edge, has not been previously investigated. Unlike some studies re-
porting that fine particles decreased more rapidly in the first 20m
above the ground and then reached background level by complete
mixing (Barratt et al., 2018; Wu et al., 2014), we found continuous
decay trends until ~120m (32nd floors) for windows facing away from
the traffic. This could relate to the atmospheric conditions not favoring
vertical mixing of air pollution in the valley. Temperature inversions
generally occur in the morning in the valley, which can trap air

Fig. 9. Vertical measurements and fitted exponential models for PM2.5 annual average concentrations (panels 1 and 2), and vertical variations of average PM2.5

concentrations in the morning rush hours and in the afternoon non-rush hours (panels 3 and 4). Note: k is the decay rate in an exponential model (Section 2.4), and
gray areas are 95% confidence intervals.
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pollution near the ground (Chu et al., 2008), contributing to the sig-
nificant vertical decay in air pollutant concentrations observed in the
morning, but not in the afternoon. As few buildings in the study area
have mechanical ventilation systems to circulate fresh air, residents
tend to open the windows for ventilation, leading to potential infiltra-
tion of outdoor pollution into the indoor environment. Ignoring vertical
variations of air pollution could lead to exposure misclassification.

Significant vertical decays of pollution occurred on the side of the
building facing traffic for NO2 and the side facing away from traffic for
PM2.5. One possible explanation is that NO2 and PM2.5 had different
primary pollution sources in the study area, contributing to varying
dispersion patterns (especially the air flows near buildings). NO2

measured by the study monitors is mainly related to traffic in this study
area (Jin et al., 2019). Ground-level pollution sources have major ef-
fects immediately downwind, and the dispersion of ground-level pol-
lution is most affected by surface features like buildings (Lippmann
et al., 2003), which could explain why we observed NO2 decay at the
building side directly facing downwind direction of a busy road, but
little vertical variation of NO2 for the building side that is not directly
exposed to traffic. On the other hand, PM2.5 was not associated with
traffic predictors, but was associated with industrial land use and was
the highest in the Qilihe District with large-scale construction on high
hills. Industrial emissions from tall stacks or soil/construction dusts
from higher elevation can be transported by airstreams travelling long
distance. When these airstreams encounter a building, a displacement
zone can occur in front of the building, and the airstreams become more
turbulent, and create a cavity behind the building, where air pollution
can be enveloped and mixed (Lippmann et al., 2003). This might ex-
plain the significant decay for the building side facing away from traffic
(behind other buildings), but not the building side facing an open street
canyon. This differs from a study of the Hong Kong urban area where
the PM2.5 distribution was associated with traffic predictors at the
ground level and significant vertical decrease of PM2.5 was observed on
the traffic side of buildings (Barratt et al., 2018; Shi et al., 2017).
Further research is warranted to explore the observed unexpected in-
creasing trends of PM2.5 for afternoon hours in fall (significant at the
building side facing traffic). One possible explanation is that under
certain meteorological conditions, a stable atmosphere layer trapping
air pollution can occur at an elevated height (Lippmann et al., 2003),
potentially contributing a measured inverse vertical gradient of air
pollution. We found significant difference in vertical variations by
window directions and time of the day, indicating the importance and
complexity of incorporating vertical variations in population exposures.

An advantage of this study over earlier LUR research is the sys-
tematic selection of sample size and locations in the monitoring net-
work design based on distributions of potential spatial predictors and
statistical simulation (Berman et al., 2019). This work builds on a pilot
study, which ensures that sampling sites have good spatial coverage and
capture the gradients of spatial predictors in the study area (Jin et al.,
2019). Furthermore, an evaluation of variograms by season revealed
little parametric variability based on nugget to sill ratios, indicating
monitor locations suitable for assessing year-long concentrations. Near-
road decay trends observed in our pilot study ensured the selection of
relevant buffer sizes of traffic-related predictors (Jin et al., 2019). An-
other innovative component of this study is the investigation of vertical
variations of air pollution by building height.

PM2.5 concentrations at the ground level were measured during the
daytime, which does not reflect nighttime exposures as would con-
tinuous measurements. More broadly, we had a limited number of
sampling days and hours per day for PM2.5 measurements, given
equipment limitations. That said, our “anchoring” strategy ensured that
we were capturing spatial rather than temporal variability, and our LUR
models were physically interpretable. The vertical measurements of
PM2.5 were not conducted in spring due to a lack of access to the
buildings at the time. Although we obtained the spatial data that were
most closely matching the study period, the land use data from 2005,

land cover and major point sources data from 2010 are much older than
the monitoring data. Future studies with more recent spatial data can
potentially improve prediction performance of the models. In addition,
meteorological data were only available for one site in the city and
thereby do not provide information on spatial variations; thus, me-
teorological data were not included in models for annual averages of
NO2 or PM2.5. Wind-related meteorological predictors have been sug-
gested to improve LUR models (Shi et al., 2017); however, the wind
speed in the study area was low; the average wind power during sam-
pling campaigns was 1.3 (< 1.5 m/s) on a scale of 0–17. Another lim-
itation is the lack of detailed spatial information on construction. Large
construction sites were observed during sampling campaigns, but no
detailed spatial data were available to identify these sites as a spatial
predictor in the model. Additionally, data on traffic volume or vehicle
types were unavailable. Finally, future work could examine vertical
variations at additional sites; vertical measurements were only mea-
sured in two selected buildings.

This study focused on developing LUR models for the urban core of
Lanzhou. We hypothesized that the models for urban cores might differ
from the models for their larger metropolitan areas because the re-
lationships between some spatial predictors and air pollution con-
centrations might vary by the degree of urbanicity, as mentioned in the
introduction. However, other explanations are also plausible for the
inconsistencies in the previous LUR models for the same study areas.
First, government monitors with lower density in suburban/rural areas
might not fully capture the relationship between spatial predictors and
air pollution concentrations outside the urban cores. Second, the LUR
models developed at different spatial scales were not always conducted
at the same time, so the temporal changes in land use might contribute
to the inconsistencies in the included spatial predictors. Other reasons
include different techniques of model development (e.g., candidate
buffers, predictor selection, treatment of missing values or outliers).
Future studies will be needed to investigate whether the models in the
urban cores and the corresponding larger metropolitan areas are dif-
ferent under the same processes of data collection and model devel-
opment, and whether the differences in LUR models between urban
cores and their metropolitan areas, if any, have an impact on health risk
assessment at various spatial scales.

5. Conclusions

LUR models incorporating vertical variation were developed in
Lanzhou urban core for PM2.5 and NO2. Substantial spatial variation
was observed and explained by land use covariates, emphasizing the
limitations of relying on government ambient monitors. Using the
outputs of the LUR models might help to improve the accuracy of ex-
posure assessment in future epidemiology studies. NO2 and PM2.5

concentrations showed different spatial patterns in the study area, in-
dicating that investigating air pollutants at refined scale could poten-
tially help disentangle the health effects of different pollutants or pol-
lution sources. Furthermore, substantial vertical variations in pollutant
levels by building height were observed in this study, and the vertical
profiles differed by window directions and time of a day. More studies
are needed to investigate how to incorporate vertical variations in ex-
posure assessment, especially in study areas with dense high-rise re-
sidential buildings. The results of this study can potentially help the
local government and the public to make informed decisions to control
pollution and reduce exposures. Local government can make district-
specific pollution control strategies based on the LUR predictions,
prioritizing Qilihe District for PM2.5 control, and Chengguan and Qilihe
Districts for NO2 control. Susceptible populations living in areas with
high pollution levels can take protective measures to reduce exposures.
Future epidemiology studies leveraging the LUR models’ predictions are
needed to investigate whether the observed fine-scale spatial variations
and vertical variations of air pollution have health implications in
Lanzhou.
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