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Abstract 

Introduction: Ambient air pollution is a top risk factor for human morbidity and mortality in the 
present day. Climate change can affect the distribution and composition of tropospheric air 
pollutants and magnify their health impact. Factoring air pollution related health considerations 
into the decision-making process is essential to optimize climate change mitigation and 
adaptation. 

Methods: With emissions projected under the Representative Concentration Pathways (RCP) 4.5 
and 8.5, air pollutant concentrations have been simulated using the North Carolina State 
University’s modified online-coupled Weather Research and Forecasting Model with Chemistry, 
which downscaled their modified global Community Earth System Model. We estimated 
changes in exposure to PM2.5 and ozone from levels in present-day (2001-2010) to levels for a 
future decade (2045-2054) in 196 major U.S. urban centers, including changes in: 1) decadal 
average concentrations; and 2) decadal total numbers of days that exceed U.S. Environmental 
Protection Agency health-based regulatory standards. A method was also developed to estimate 
the excess number of cardiovascular and respiratory hospital admissions attributable to PM2.5 and 
ozone under climate change, taking population vulnerability, temporal change and seasonal 
variation of concentration-response function into consideration. 

Results and Conclusions: In our preliminary results, for most U.S. urban centers in this study, we 
observed decreases in decadal average PM2.5 concentrations from present-day to future decade 
under both scenarios, for this analysis which considers emissions changes only (i.e., not changes 
in population, etc.). We also observed decreases in decadal average ozone concentrations under 
RCP4.5 for most urban centers, while increases were observed under RCP8.5. More than half of 
urban centers in this study demonstrated decrease in total number of PM2.5 and ozone exceedance 
days under both scenarios. However, we would still expect to observe adverse health outcomes 
associated with exposure to air pollutants in the future. We also observed spatial heterogeneity in 
change of concentrations between two pollutants. 

Background 

In 2015, 196 parties at the 21st Conference of the Parties of the United Nations 
Framework Convention on Climate Change undertook ambitious efforts to adopt the Paris 
Agreement, aiming to mitigate and adapt to climate change, with 170 parties ratifying by 2016 1. 
How and to what extent climate change will influence human health deserves critical attention 
from researchers and policy makers 2. Climate change can magnify health risk factors that 
already exist, including but not limited to extreme weather 3–6, under-nutrition from diminished 
food production 7, aeroallergens 8, and food-, water- and vector-borne diseases 9,10. Climate 
change also could affect the distribution and composition of tropospheric air pollutions through 
atmospheric circulation, chemical reaction rates, deposition and altered natural emissions 11.  



Chen Ch
Hixon C

 

A
day. Two
pollution
An exten
ozone an
mortality
areas exc
respectiv
change is
make inf
especially

 
Figure 1. 
work 

L
years. Tw
PM2.5 and
positive c
Represen
health ou
in suscep
consisten
related de
the assoc
groups 31

hen 
Center for U

Ambient air p
o important u
n, contributed
nsive literatu
nd adverse he
y 15–20 and m
ceeding healt
vely 26. Accu
s essential to
formed decis
y important 

Diagram for 

Literature on 
wo recent rev
d ozone as a
change in air
ntative Conc
utcomes, or c
ptibility over
ntly increasin
eaths varied 

ciation betwe
1,32. Moreove

rban Ecolog

pollution is a
urban polluta
d to 4.2 and 

ure also ident
ealth endpoin
orbidity 21–2

th-based stan
urate evaluati
o estimate th
sions about m
as many U.S

conceptual m

air pollution
views report
a result of cli
r pollution re
entration Pa
considered v
r time 27,28. F
ng ozone-rel
across studi

een various h
er, changes i

gy-Final Re

a top risk fac
ants, ambien
0.2 million p
tified deleter
nts like poor
5. Currently 
ndards for d
ion of health
e health burd

mitigation an
S. cities alre

model of this p

n and health 
ted that most
imate change
elated prema

athways (RC
vulnerability
For the U.S., 
lated deaths 
ies and regio
health outco
in pollutant l

eport for Hi

ctor for hum
nt PM2.5 (par
premature d
rious associa
r birth outco
more than 2

daily average
h impacts fro
den and mar
nd adaption p
ady face hig

projected prop

under clima
t studies proj
e 27,28. For ex
ature mortali
P) 8.5. How
of sub-grou
a recent rev
in north-cen

ons. Also, pr
mes and air 
levels and as

ixon Fellows

man morbidity
rticulate mat

deaths global
ations betwe
omes 13,14, re
23 and 107 m
e PM2.5 stand
om PM2.5 an
rginal cost o
policy of cli

gh levels of h

posal and its r

ate change ha
ojected increa
xample, Silv
ity attributab

wever, few stu
ups within th
view by Kinn
ntral and nor
revious studi
pollutants a

ssociated hea

ship 2018 

y and mortal
tter < 2.5μm
lly in 2015, r
een exposure
spiratory and

million U.S. 
dard and 8-h
d ozone und
f climate ch

imate change
harmful air p

relationship to

as grown rap
ased mortali
va et al. (201
ble to climat
tudies focuse
he population
ney (2018) re
rtheastern sta
ies reported 

across sex, ra
alth impacts

lity in the pr
m) and ozone

respectively
e to PM2.5 an
d cardiovasc
persons live

h ozone stand
der climate 
ange and to 
e. This is 
pollutants.  

o my disserta

pidly in rece
ity related to
17) projected
te change, un
ed on other 
n, or adaptat
evealed 
ates, while P
heterogeneit

ace, and age 
s at local sca

2 

resent 

12. 
nd 
cular 
e in 
dard, 

 

ation 

ent 
o 
d 
nder 

tion 

PM-
ty in 

les 



Chen Chen 
Hixon Center for Urban Ecology-Final Report for Hixon Fellowship 2018 

3 
 

are obscured by national or global assessments, and were not well explored by previous studies 
33,34,27,28. Temporal trend of association between particulate matter and adverse health outcomes 
was reported by researchers in the U.S. and Germany, which was confirmed by my preliminary 
results in Project 1 of my dissertation research (Figure 1) as well 35,36. The observed seasonal 
variation in association between air pollution and risk of adverse health outcomes was not 
considered in previous climate change and air pollution studies, either 37. Above studies 
highlighted the need to explore sensitive subpopulations by potential vulnerable indicators at 
both community (e.g., region, seasonality, and calendar year) and individual (e.g., sex, race, and 
age) levels. Further, the estimated changes in health impact from earlier work had a wide range, 
which highlights the need to acknowledge potential sources of uncertainties such as methodological 
choices and model assumptions 27,28. We will attempt to address the knowledge gaps listed above in 
this study.  

Objectives 

In this study, we aim to estimate changes in PM2.5 and ozone under different climate 
change scenarios in major U.S. urban counties. Specifically, we will estimate changes in 
exposure to two pollutants from levels in present-day (2001-2010) to levels estimated for a future 
decade (2045-2054) in 196 major U.S. urban counties. We plan to generate estimates and maps 
of these counties under climate change for changes in 1) decadal average PM2.5 and ozone 
concentrations; and 2) decadal total of numbers of days that exceed U.S. Environmental 
Protection Agency (EPA) health-based standards for PM2.5 and ozone. Given the limitation in 
time under this fellowship, we will only develop the method to estimate the excess number of 
cardiovascular and respiratory hospital admissions attributable to PM2.5 and ozone under climate 
change, taking population vulnerability, temporal change and seasonal variation of 
concentration-response function (CRF) into consideration.  

This study sponsored by Hixon Center for Urban Ecology is part of project 2 in my 
dissertation research (Figure 1). Project 1 of my dissertation research explores temporal trend in 
the association between PM2.5 and risk of hospital admissions among elderly population. Project 
2 combines CRF estimated in project 1 with estimated exposure changes and the method 
developed in this study, to further calculate changes in health impacts of PM2.5 and ozone under 
different climate change scenarios. Results will reveal potential spatial and population 
heterogeneity in changes in air pollution related health impacts under climate change and 
identify critical groups and regions for mitigation and adaptation. This work will be beneficial to 
policy makers designing climate change policies, but also to communities interested in local 
climate adaptation measures and air quality. 

Methods 

Overview 

 We evaluated the impacts of PM2.5 and ozone under climate change using three metrics in 
U.S. urban counties for changes in: 1) decadal average concentrations; 2) decadal total numbers 
of days that exceed current U.S. EPA health-based regulatory standards; and 3) decadal total 
excess number of hospital admissions related to exposure to air pollution. We selected 196 U.S. 
urban counties that have 1) sufficient pollutant monitoring data for CRF estimation; and 2) a 
population larger than 200,000 based on the U.S. Census Bureau 2010 decennial census.  
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With daily gridded air pollutant concentration simulations for present-day and future 
decades from state-of-the-science regional climate and air quality models, we calculated area-
weighted county-specific changes in decadal averages of PM2.5 and ozone concentrations, and 
the changes in decadal sum of days that exceed U.S. EPA health-based standards of PM2.5 and 
ozone under different climate change scenarios. An exceedance day is any day during the study 
period with pollutant level higher than current National Ambient Air Quality Standards 
(NAAQS), namely with 8-hour daily maximum ozone concentration higher than 70 ppb, or with 
24-hour average PM2.5 concentration higher than 35 μg/m3 38. This is different from the criteria 
for identifying non-attainment areas.  

To quantify the health impact of air pollution, we used the excess number (EN) of 
hospital admissions due to air pollution, a metric used to describe the number of hospital 
admissions that could have been avoided if exposure was reduced to a reference level 39. 
Compared with other health impact metrics pertaining to air quality management such as 
disability-adjusted life years, monetized impacts, and functional unit-based metric, EN yields the 
best interpretability and spatial resolution 40. We considered cardiovascular and respiratory 
hospital admissions separately, each defined as a set of admission diagnoses. The calculation of 
ΔEN required four types of estimates as inputs, each of which contributes uncertainty: 1) 
distribution of air pollutants; 2) CRF for the association between short-term exposure to air 
pollutants and risk of hospital admissions; 3) health linkage function (HLF) connecting observed 
or projected air pollutant concentration and risk of hospital admissions; and 4) population 
characteristics such as size and age distribution. We estimated changes in EN under climate 
change as the difference in air pollutant related health impact between present-day decade and 
future decade following  

 

Eq. 1, for each combination of health outcome, air pollutant and potentially vulnerable 
subgroup.   

 

Eq. 1 

 
where ΔENc denotes the change in excess number of hospital admissions due to air pollution (the 
future value minus the current value) in geographic area c; Ratec, present-day denotes the average 
risk (e.g., incidence rate) at current decade level for population p and area c; Popc,p denotes the 
average population size for population p in geographic area c. In this study, area c could be a U.S. 
urban county; HLF denotes the health linkage function given the projected exposure levels for 
current and future decade and coefficients of CRF derived from epidemiological studies. Outputs 
from HLF represent the estimated percentage increase in risk of hospital admissions comparing 
to reference level of exposure.  

We utilized the HLF derives from the population attributable fraction (PAF) concept, as described by 
Murray and Lopez (1999). This is basically using the present-day population as the reference population 

and the future population as the counterfactual population with a different distribution of air pollutant 
concentration. As in most time-series analysis for environmental stressors, we treated the whole 

population as exposed and the derived HLF is shown in  

Eq. 2.  

EN c  Ratec ,presentday  Popc ,p HLF
2
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Eq. 2 

 
 
 
where Exposuret

c, future denotes average air pollution level in time t of future decade for area c; 
(t)c, future denotes the Bayesian area-specific estimate of association after pooling during time t 
of future decade. 

Given the complexity of potential uncertainty for the inputs in the ΔEN calculation, we 
also quantified some potential uncertainties in calculation. Many studies approached this 
problem with an ensemble method by using extensive sensitivity analyses with different 
combinations of methodological choices 45,42,49,50. We utilized a modified version of the Monte 
Carlo simulation method proposed by Gasparrini and Leone (2014). We calculated county-
specific change in health impact under climate change (ΔEN) 5000 times for each combination 
of RCF, pollutant and potentially vulnerable subgroups, using one randomly sampled set of 
parameters describing the population size distribution, one randomly sampled set of parameters 
describing CRF, and one randomly sampled set of parameters describing the risk at current 
decade level. These samples combined with other estimates (e.g., projected exposure level) were 
then utilized to empirically reconstruct the distribution of change in health impact and to 
compute uncertainty intervals. These uncertainty intervals describe the range of changes in air 
pollutant related health impact under climate change and provide information on how much 
uncertainty each component contributes to the overall estimate. Below we elaborated on 
proposed distributions and values for RCF, population characteristics and risk at current decade 
level. 

Ambient air pollutant concentration estimation 

Our collaborators, Prof. Yang Zhang and team at North Carolina State University (NCSU) 
in the Department of Marine, Earth, and Atmospheric Sciences, generated the daily gridded air 
pollutant concentration estimates for present-day and future decades using state-of-the-science 
regional climate and air quality model. They simulated air quality and climate with the online-
coupled Weather Research and Forecasting Model with Chemistry (WRF/Chem) at a horizontal 
resolution of 36 km with 148 × 112 horizontal grid cells over the domain of continental U.S., and 
a vertical resolution of 34 layers for present-day (2001 to 2010) and future (2046 to 2055) 
decades. WRF/Chem was used to downscale NCSU’s modified Community Earth System Model 
that generated the chemical and meteorological initial and boundary conditions at a horizontal 
resolution of 0.9° × 1.25° and a vertical resolution of 30 layers 52,53. Projected emission of air 
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pollutants and greenhouse gases for the future utilized in these models are from RCP 4.5 and 8.5, 
indicating projected radioactive forcing values of 4.5 and 8.5 W/m2 for the year 2100 54. Based 
on consistent scenarios representative of current literature, RCPs represent a set of internally 
consistent potential development for emission, land use, and socio-economic scenarios 54. RCP 
8.5 assumed high population, relatively slow income growth, modest rate of technology 
development, and resulted in a high energy-intensive and high GHG emission scenario without 
specific climate change mitigation target 55. RCP 4.5 assumed intermediate population, GDP 
growth and mitigation 56.  

We used simulated air pollutant concentrations, daily average concentration for PM2.5 and 
daily maximum 8-h concentration for O3, from aforementioned models to estimate county-
specific exposure for both present-day and future populations. We first generated weighted 
averages of daily air pollutant gridded model estimates, with weights assigned to grid cells by 
percentage of county area within each cell. Depending on the metrics of CRF, we aggregated 
these daily measurements to annual averages or decadal averages.  

Concentration-response function from historical data 

For associations between air pollution and adverse health, and risk for adverse health 
outcomes at a reference level, we utilized the Bayesian hierarchical model to generate county-
specific estimates after pooling information across the urban counties 15,57. Data utilized in this 
statistical model were hospital admission data of U.S. Medicare beneficiaries, U.S. EPA PM2.5 
monitoring data, and metrological data from National Oceanic and Atmospheric Administration. 
Model specification and data source are specified in project 1 of my dissertation research and not 
the main research question in this study. 

To incorporate change of CRF over time into the calculation of ΔEN, we estimated three 
sets of CRFs for each combination of health outcome, air pollutant and potential vulnerable 
population: 1) CRF without temporal trend, and we assumed a normal distribution for this 
coefficient when sampled for the calculation of ΔEN; 2) CRF with non-linear temporal trend, 
and we assumed a multivariate normal distribution for these coefficients when sampled for 
calculation of ΔEN; and 3) season specific CRF 58, and we assumed a multivariate normal 
distribution for these coefficients when sampled for calculation of ΔEN. The assumptions of 
distributions here are consistent with the underlying assumptions of TLNise function, the 
algorithm utilized to derive these estimates from the Bayesian hierarchical model.  

Since earlier researches indicate that PM2.5 is unlikely to be a confounder for the ozone 
and morality relationship, estimation of CRFs were performed for PM2.5 and ozone separately 
using the same set of equations 59. To incorporate information of all study counties as well as to 
reduce variation in associations at individual county level, we used the Bayesian county-specific 
estimate of association after pooling. In this way, each urban county had their own risk estimates 
after incorporating information from all relevant counties in study. We also assessed the 
statistical significance of heterogeneity with Wald test or MANOVA before carrying out subset 
analyses. 

Projected population characteristics 

We obtained county-level population sizes and racial distributions for persons >65 years 
from the U.S. Census Bureau 2010 decennial census to represent present-day decade population 
distribution. For future decade, we combined information from multiple sources. We used 
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county-level population projections by the U.S Integrated Climate and Land-Use Scenarios 
(ICLUS) for 2050 using Special Report on Emission Scenarios (SRES), the earlier version of 
climate change storyline produced by the Intergovernmental Panel on Climate Change 60. RCP 
8.5 is based on a revised version of SRES A2 scenario regarding demographics and economics 
trends, but the actual population projections of RCP 8.5 fall between SRES A2 and B2 scenarios 
54,55. Population assumptions in RCP 4.5 are based on scenarios of the Global Change 
Assessment Model with no corresponding scenario in SRES 56. It employs the lowest population 
assumption among all RCPs and its population projections fall between SRES B1/A1 and B2 54. 
Since ICLUS projections lack age distribution of the population, we multiplied ICLUS county-
level projections for the whole population by the ratio of elderly population to the whole 
population in 2050 projected by the U.S. Census National Population Projections to estimate the 
county-level population size and racial distribution for persons >65 years. For calculation of 
health impact, we assumed uniform distribution between projections of SRES A2 and B2 for 
RCP 8.5 related analysis, and uniform distribution among projections of SRES B1/A1, and B2 
for RCP 4.5 related analysis.  

Preliminary Results 

As shown in Table 1, we observed decreases in decadal average concentrations and 
decadal sum of exceedance days for PM2.5 and ozone under both climate change scenarios, 
except for change in ozone average concentration under RCP8.5. The interquantile ranges for 
both pollutants are also projected to decrease regardless of climate change scenario. Decadal 
average concentrations and decadal sum of exceedance days demonstrate spatial disparity 
between two pollutants but similar spatial pattern between two scenarios. For example, we 
projected highest increase in decadal average ozone concentration in counties of Midwest and 
Northeast under both RCP8.5 and RCP4.5 (Figure 2 and Figure 3), while we projected the 
smallest decrease in decadal average PM2.5 concentrations in counties of West (Figure 4). 

Table 1. Summary of county-specific exposure estimates for present-day and future dacades, and 
coresponding changes. 

Scenarios 
Present-day decade 

Median (Q1, Q3) 
Future decade 

Median (Q1, Q3) 
Change (future-present) 

Median (Q1, Q3) 
Ozone decadal average concentration (ppb) 
RCP4.5 42.3 (39.5, 44.7) 39.5 (38.4, 41.3) -2.9 (-4.4, -1.1) 
RCP8.5 41.7 (38.3, 44.2) 43.7 (42.0, 45.5) 2.3 (0.8, 3.6) 
PM2.5 decadal average concentration (μg/m3) 
RCP4.5 10.1 (7.2, 12.1) 5.7 (4.2, 6.7) -4.0 (-5.8, -2.6) 
RCP8.5 9.9 (6.9, 11.9) 4.2 (3.0, 5.2) -5.5 (-7.4, -3.7) 
Ozone decadal sum of exceedance days 
RCP4.5 138 (62, 222) 15 (10, 24) -118 (-202, -44) 
RCP8.5 105 (47, 190) 7 (3, 14) -93 (-185, -32) 
PM2.5 decadal sum of exceedance days 
RCP4.5 8 (1, 33) 0 (0, 2) -4 (-27, 0) 
RCP8.5 10 (1, 33) 2 (0, 3) -9 (-30, 0) 
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First, this study only reveals a partial image for air pollution related health impact of 
climate change. We only evaluated the health impact related to short-term exposure to two single 
air pollutants, while long-term exposure to these pollutants and numerous other risk factors have 
deleterious human health impact and vary under climate change. Second, with CRF calculated by 
my analysis, we can account for uncertainty with Monte Carlo simulation, and to use health 
associations considering temporal trend and seasonal variation, at the county level, and specific 
to potential susceptible groups like age and sex. However, only using CRF estimated in one 
study does not take advantage of the collective knowledge accumulated in the epidemiology 
community. Third, the HLF we adopted incorporates the comparison of exposures between 
present-day and future populations and we can only change population characteristics 
simultaneous for both present-day and future population when estimating ΔEN. When future 
population characteristics were used, we applied the population characteristics of the future 
decade to the percentage change in excess number of hospital admission per projected change in 
air pollutant level. Thus, the resulting ΔEN is a comparison between the population with future 
characteristics and future air pollutant level, and the population with future characteristics and 
current air pollutant level. This is different from the direct comparison between the future and the 
current population, allowing both population characteristics and air pollution levels to differ. 

Another widely used HLF is based on the health impact function from BenMAP, which 
compares average exposures between two periods and is less flexible in capturing temporal 
variation in exposures, thus not utilized here 33,42–44. Peng et al. (2011) also proposed a new HLF 
for heat related mortality under climate change, which allows separate calculation of EN for 
present-day and future population and preserves the flexibility to apply different population 
characteristics simultaneously. However, applying this HLF to a continuous exposure requires 
calculation of risk at a pre-specified exposure level, where the adverse health impact of air 
pollutant should be minimized. Currently there is no consensus on this value for either PM2.5 or 
ozone in the science community. The WHO utilized the theoretical minimum-risk exposure level 
(33.3 to 41.9 ppb for ozone and 2.4 to 5.9 μg/m3 for PM2.5), aiming to minimize the health 
impact by reducing air pollutant to a practically reasonable level 46. While atmospheric scientists 
propose to use the policy relevant background level when all anthropogenic sources of emissions 
were removed 47,48. Both reference levels are so low that little health impact assessment was 
conducted at this level, making it hard to derive a risk at reference level without extrapolating.  

Next steps 

In future work, we will leverage the above estimates to calculate the change in excess 
number of hospital admissions due to PM2.5 and ozone under RCP4.5 and RCP8.5. These results 
will incorporate population heterogeneity in health response, projected population sizes, and 
projected change in ambient air pollution levels estimated above, which could provide insights in 
identifying critical groups and regions for mitigation and adaptation. We will also reach out to 
atmospheric scientists regarding these results for a more in-depth understanding of the observed 
changes in PM2.5 and ozone exposures in order to better understand these results and follow-up 
on our preliminary findings.  
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