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A B S T R A C T

Natural hazards sharing climatic precursors of temperature and precipitation– heat, drought, and 
wildfires–amplify their individual effects when they occur in the same time and space. Their 
combined effects pose numerous challenges to urban areas by decreasing resilience of infra
structure, affecting people’s health and safety, and undermining economic stability. This study 
quantifies the temporal and spatial interactions between heat, drought, and wildfires in Cal
ifornia’s Metropolitan Statistical Areas for the month of July from 1981 to 2022. We aim to 
address two questions: 1) How are these hazards changing over time and space? And 2) How are 
these hazards combined exposing the local land and populations? The temporal analysis found 
each individual hazard is increasing in frequency. The annual average values for maximum 
temperature and wildfire burn areas measure consistently above their 20th-century average and 
drought above the 40-year average. Since 2000, each hazard measured higher than their long- 
term averages for almost every year, underscoring the persistent climate strain on the state. 
The spatial assessment revealed, from 1981 to 2022 for the month of July, one-third of California 
has experienced multiple hazard events encompassing temperature, drought, and/or wildfire. 
Comparison between population exposure and land (% area) exposure reveals that Riverside 
experienced the highest total population exposed to multiple hazards, over 2 million people, 
despite less than 30 % of its land exposed to multiple hazards. The results indicate urbanization 
has further amplified vulnerabilities and comprehensive data regarding multiple hazards and 
types of exposure are necessary to estimate risk for public health and economy.

1. Introduction

Natural hazards are becoming more frequent and unpredictable, increasing the likelihood for multiple hazards to overlap in a given 
time and space [5,48]. Specifically natural hazards, such as wildfires or drought, do not often occur alone [28]. More often, they occur 
together with another natural hazard that share common climatic precursors [4,52]. Multi-hazard occurrences can happen at the same 
time (compounding) or following one after the next (cascading) (Fig. 1) [19,28,55]. Compounding events are when two or more 
natural hazards occur concurrently with underlying conditions such that it amplifies the impact when these events occur within the 
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same timeframe and region [38,52,64]. Cascading events are when two or more natural hazards occur consecutively, with the first 
event amplifying the adverse effects of weather conditions such that it can trigger a following event [22,56]. Multiple hazard events 
pose higher risk to their surrounding environments because their cumulative effects can have more detrimental impacts than indi
vidual events [34,56].

The occurrence of multiple hazards in a given time and space not only impacts the environmental conditions but contributes to 
societal risk [16,22,42]. When these hazards occur at the same location, their cumulative impact can escalate their effects compared to 
when they occur alone [38,52,64]. For example, observed increases in drought across California have contributed to extended wildfire 
seasons [7]. Between 2017 and 2020, these prolonged wildfire seasons claimed 200 lives and destroyed 45,000 structures, with smoke 
and extreme air pollution affecting millions [11]. In 2020 alone, the total economic losses are estimated to exceed $19 billion [49]. And 
in January of 2025, wildfires spread across the Los Angeles region in Southern California, resulting in damages estimated to cost near 
$250 billion [29]. Two of these wildfires, the Eaton Fire and Palisades Fire, have been recorded as the second and third most 
destructive in the history of the state [39]. As temperature and precipitation patterns are projected to shift around the world, un
derstanding the local interaction of hazards is critical for sustaining resilient cities [34,53].

More than 4.2 billion people around the world live in urban areas which encompass complex infrastructure, dense populations, and 
dynamic economies [34,35,47]. As cities expand, they may create additional hazard risks, such as adding buildings as fuel at the 
wildfire-urban interface [50]. Many urban areas are exposed to one or more natural hazards; hazards pose a risk to these complex 
systems because climatic disruptions can expose their vulnerabilities and lead to devastating consequences [34,45]. Since 1990, the 
impact of natural hazards has caused 1.6 million deaths globally and an overall economic loss ranging between 260 and 320 USD per 
year [60]. The IPCC 6th Assessment Report calls for the implementation of multiple hazards into risk assessments because of the 
vulnerabilities that exist in urban infrastructure, public health and safety, and sensitive economies [4,5,30,45]. Ongoing expansion of 
urban areas will continue to increase their exposure to individual hazards and/or multiple hazards, leading to more risk and potential 
consequences that can exacerbate existing vulnerabilities [26,34,60].

In this study, we aim to address two research questions: 1) How are these hazards changing over time and space? And 2) How are 
these hazards combined exposing the local land and populations? These questions aim to understand how these hazards have indi
vidually changed over time and space and provide insight into potential vulnerabilities and guiding risk reduction efforts.

We analyze two key types of exposure in urban areas, land (% area) exposure and population exposure, helping understand which is 
most at risk from multiple hazards [26,55]. Knowing the extent of land exposure is crucial due to the economic assets concentrated in 
and around urban areas, including: densely built infrastructure, transportation networks, agricultural zones, and energy production 
facilities [34]. In addition, recognizing the amount of population exposed is critical for safeguarding public health and safety, as 
significant disruptions can cascade into adverse impacts to people’s lives as well as undermine economic stability [37,61]. Land 
exposure and population exposure often overlap. However, identifying the level of multiple hazard exposure for both helps clarify 
where to focus resources for risk assessments. This approach supports better allocation of resources and more effective mitigation of 
vulnerabilities.

Fig. 1. The relationship of compounding and cascading hazards between extreme heat, drought, and/or wildfires.
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2. Study area

California is the United States’s largest economy, earning its status from sectors in agriculture, entertainment, recreation, tech
nology, and trade [8,15]. Our study area includes 26 Metropolitan Statistical Areas (MSAs) encompassing large areas with populations 
exceeding 50,000, bridging the urban sector with the surrounding land that those urban areas rely on for their economic well-being 
(Fig. 2). Across the state exist dense clusters of urban populations, accounting for around 12 % of the U.S. population, which rely 
directly on their surrounding land to support their local economies and livelihoods (See Appendix A.1 California Population per sq. 
mile by Census Tract for 2020) [8,15]. The state is known for its diverse landscapes of coastal shorelines, agricultural land, mountain 
ranges and deserts which are categorized into 11 Modified Köppen Climate Classifications, including: Semi-arid, steppe (hot); 
Semi-arid, steppe; Semi-arid, steppe with summer fog; Arid low latitude desert (hot); Arid mid latitude desert; Mediterranean/hot 
summer; Mediterranean/cool summer; Mediterranean/summer fog; Cool continental/dry summer; Cold winter/dry summer; and 
Highland/Timberline [12].

Characterized as one of the most “climate-challenged” regions in the United States, California is projected to be at greatest risk to 
climate-induced hazards due to high exposure and vulnerability [8,35,38]. In 2023, the state experienced 28 separate billion-dollar 
weather and climate related disaster events, totaling at 92.9 billion USD [40]. Three of the most notorious hazards affecting Cali
fornia are extreme temperatures, severe drought, and uncontrollable wildfires with each individually contributing negative impacts 
across urban areas [6,36,44]. For example, an individual hazard, such as extreme temperature, can amplify the underlying effects of 
decreasing soil moisture, thereby increasing drought conditions which depletes the landscape creating greater potential for wildfire 
occurrence [5]. Each of these hazards have different timelines and spatial distributions which makes cumulative impact more difficult 
to predict [10,23,51].

Heat events, prolonged high temperatures or perceived heat conditions that exceed typical norms for a given region, impact the 
populations in California, especially those residing and working in highly urbanized areas. Extended periods of extreme heat correlate 
with hospital visits due to heat exhaustion, strokes, and heat-related mortality; from 1999 to 2009, 19 heat-related events occurred and 
resulted in 11,000 excess hospitalizations [8]. By mid-century, Central Valley is expected to experience two weeks longer of 
heat-related events [8]. In NOAA’s weather and climate related economic impact reports, heat is not considered which does not 
accurately reflect California’s allocation of funding towards handling this hazard [40]. With the current health-related risks and 
projected increases in heat, this carries direct implications for government mitigation strategies.

In many situations, heat events increase the occurrence of drought within surrounding areas; together their effects contribute to 
landscape degradation, resulting in crop loss and major disruptions to the supply chain and economic stability [30,32]. The 2021 
drought cost the agriculture sector nearly 1.1 billion USD and 8750 jobs [30]. The extent of damage across California’s landscape in 
2021 from combined heat and drought impact directly contributed to the extent of wildfire spread, burning roughly the size of San 

Fig. 2. Map of California displaying study area terrain and Metropolitan Statistical Areas (MSA) boundaries in black.
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Diego County at 2.5 million acres [14].
California’s 4th Climate Change Assessment evaluates the state’s current and future impacts of each of these hazards individually 

but does not account for the combined effects in co-occurring hazard events [8]. The combined impact of these three hazards results in 
land and population exposure with a combined loss through public health and economy. Government agencies seek to use historic 
multiple hazard assessments as a tool to mitigate the impacts to local population and sustainable planning and development [8,33]. 
While other studies have looked at spatiotemporal relationships with wildfire in California [9,63], this study is unique as this is the first 
study to analyze the spatiotemporal clustering of extreme heat, drought, and wildfires in California at high resolution, in addition to 
assessing their relation to land exposure and population exposure across the MSAs.

In this study, we examine heat by temperature maximum (Tmax), drought by the Palmer Drought Severity Index (PDSI), and 
wildfire by total burnt area, to observe their co-occurrences based on their temporal and spatial history from 1981 to 2022. We use 
California’s MSAs to then assess their relation to land exposure and population exposure. July is used as the base month for this 
analysis because all three hazards are at their collective highest impact during this time of year. For each hazard, we seek to understand 
the frequency change, combined spatial distribution and overlap, and which MSA are most at risk.

3. Methods

This analysis focuses on using open-source datasets to examine the spatial and temporal trends of three climate datasets. The 
workflow of this analysis mines image collections in Google Earth Engine (GEE), stores the collected data in cloud storage to be 
compatible in several programs, and is run through a series of statistical and spatiotemporal methods (Fig. 3; See Appendix A.2 Data 
Automation & Download).

3.1. Datasets

This study utilizes three datasets to examine spatiotemporal trends for the base month of July from 1981 to 2022 across the state of 
California: the Parameter-elevation Regressions on Independent Slopes Model (PRISM), the Gridded Surface Meteorological (grid
MET), and the California Department of Forestry and Fire Protection (CAL FIRE) Wildfire Perimeters.

PRISM is a gridded climate dataset using interpolation techniques to simulate weather and climate across the contiguous United 

Fig. 3. Workflow for spatiotemporal analysis of multiple hazards to assess land and population exposure.
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States [21]. We use the daily maximum temperature (Tmax) available at ~4 km spatial resolution to assess variations of high tem
perature values in degrees Celsius. Therefore, we utilize daily maximum temperature as the primary heat indicator. The gridMET 
dataset contains PDSI, capturing relative soil moisture conditions, and has spatial resolution of ~4 km and daily temporal resolution, 
covering the entirety of the US. PDSI values range from − 10 (extreme drought) to +10 (extremely wet) [1]. GridMET is downscaled 
from station data using physiographic features such as elevation and coastal proximity. The spatial resolution exceeds that of in-situ 
station observations, enabling comprehensive assessment of variations within and between California’s MSAs [58]. CAL FIRE’s 
Wildfire Perimeters is a dataset containing burn areas with their start and end dates from 1879 to 2022 [25]. The dataset does not show 
the spatial progression of an individual wildfire throughout the event, rather documents the total extent across the start and end dates. 
While satellite imagery can offer insights to fire progression, we rely on the Wildfires Perimeters dataset as it is the most comprehensive 
wildfire record in California and widely used for state’s policy-making and planning (See Appendix A.3 Pre-processing of Vector Data) 
[24].

3.2. Temporal analysis

Understanding temporal trends is important because it helps identify patterns and changes over time, which are essential for 
predicting future risks and planning effective mitigation strategies. By analyzing these trends, we can better understand the pro
gression and severity of hazards. We analyze temporal trends using simple linear regression by calculating the annual averages for each 
variable and plotting the values against their respective long-term averages. The delineation of the data frames by year allows for 
calculation of the annual averages for Tmax, PDSI, and wildfire burn area. To calculate the long-term average for Tmax, we obtained 
the 20th-century average value from NOAA’s Climate at a Glance dataset [40]. For PDSI, we rely on the 40-year average from our study 
period to assess the difference due to the absence of a direct comparison for a 20th-century average. We calculate the average burn area 
for the 20th century by aggregating July data from 1900 to 2000. Since the total extent of the study area includes several image subsets 
for smaller regions, we performed image mosaicking (i.e., using the Create Mosaic Raster tool in ArcGIS Pro) to combine the images 
into a single layer file per variable (See Appendix A.4 Multidimensional Processing).

For the entire study area, we calculated the annual change rate for Tmax, burn area, and PDSI by fitting simple ordinary least 
squares linear regression models to annual data on each variable.

3.3. Spatial analysis

We examine the spatial trends of individual hazards to understand how they vary across different regions. This is essential for 
identifying areas that are more prone to each specific hazard. A cluster refers to a group of spatially proximate pixels that exhibit 
similar hazard patterns, suggesting localized intensities or trends. We calculated the frequency of being an individual hazard cluster for 
each pixel to identify clusters of values from their spatial and temporal patterns. This is a pixel-based analysis using the K-nearest 
neighbors method (KNN) which accounts for the surrounding pixels’ values; identifying over time, the degree of variance each pixel 
has experienced. The number of neighbors affects the sensitivity of the analysis. In anticipation of using a KNN method, the optimal 
number of neighbors was determined as 8 using Moran’s I [17].

Using a hotspot analysis allows us to understand the percent of time a hazard significantly impacts a specific pixel location. A 
hotspot is defined as a statistically significant cluster of high or low pixel values for a particular variable within a spatial dataset. This 
provides insight into the areas where hazards are most prominent across the state. To determine hotspots, the Getis-Ord Gi* statistic 
measures the degree of spatial association between neighboring pixels [41]. The Gi* values and their respective statistical significance 
(P-value <0.05) for each hazard variable indicate where high and low values are spatially clustered for each year. Aggregating the 
hotspot results across the entire study period, the output we generated by this analysis is the “percent statistically significant hotspot” 
defined as the proportion of time that a given location (~4 km pixel) experiences a statistically significant high value, measured from 
0 to 100. This information provides insights into the temporal stability and persistence of spatial patterns across the study area. Higher 
percentages in Tmax, PDSI, and wildfire burn areas signify areas of significance or concern. This spatial assessment facilitates the 
identification of regions experiencing consistent multiple hazards by running the results through multivariate cluster analysis.

3.4. Multivariate cluster analysis

Each result from the hotspot analysis was simultaneously run through a multivariate cluster analysis to identify locations of the 
percent time of hotspots that exist between Tmax, PDSI, and wildfire burn area. The K-averages algorithm partitions clusters based on 
the most similar and different features using the Calinski-Harabasz pseudo-F statistic [43,54]. Based on the cluster analysis, the output 
shows several clusters with low, medium, or high levels for each hazard variable. The levels are identified based on their relative 
amount of time experienced as a significant hazard hotspot for each cluster. The high levels correspond to those where the hotspot 
conditions persisted for a larger portion of the time, indicating a more frequent or prolonged co-occurrence of multi-hazard. In total, 
seven clusters were found in this assessment; we choose the three with the highest percent significance as these are linked to the 
greatest potential for multiple hazards: 1.) high temperature, high drought, and high wildfire burn area, 2.) high drought and high 
wildfire, and 3.) high temperature and medium drought.
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3.5. Land exposure

We choose California’s MSAs as administrative units because they have large concentrations of populations and surrounding land 
that are prone to these hazards. This assessment takes into account the exposure of the specific MSA to each type of multiple hazard (i. 
e. 1. high temperature, high drought, and high wildfire occurrence, 2. high drought and high wildfire occurrence, and 3. high tem
perature and medium drought) results generated by the multivariate cluster analysis.

Using the term land exposure is specifically referring to the amount of space in which a hazard occurs, encompassing all land 
directly exposed to a hazard [18,31]. This is defined as such to take into account each hazard’s direct and indirect impacts. In the case 
of land exposed to wildfires, this has direct location implications, such as damage to the local ecosystem, as well as indirect impli
cations, such as smoke carrying over to surrounding communities and impacting human health. While land exposed to high tem
peratures and high drought have mostly direct impacts to land.

To understand the percent of land exposed to each multiple hazard, we overlay the calculated multi-hazard analysis with the MSA 
dataset. Each multi-hazard area is overlaid and intersected with the area of the MSAs with the resulting data being “cropped” within 
the boundaries of the MSA. The output results in a table with information from both the MSA and the clusters of multiple hazard data. 
From there, we compute the area of each type of multiple hazard cluster in acres and use the existing MSA acreages to find the percent 
of land area exposed and multiply by 100 for the percentage using Equation (1): 

% land exposed=multi − hazard area within the MSA / MSA area x 100 (1) 

The three resulting outputs (e.i %land exposed to high temperature, drought, and wildfires; %land exposed to high drought and 
wildfires; %land exposed to high temperature and medium drought) are combined into a single file format to assess the percentage of 
land exposed to each multiple hazard across all MSAs.

3.6. Population exposure

To calculate population exposure, we utilize Census Tracts containing total population in 2020, from the U.S. Census Bureau [59]. 
The 26 MSA boundaries have a total of 1702 Census Tracts within them. We use Census Tracts because they are a finer administrative 
unit and prevent overestimation of population exposure by only intersecting a smaller Census Tract unit rather than the entirety of an 
MSA.

We then perform a sub-analysis at the Census Tract level and apply it to each multiple hazard cluster. The output from the sub- 
analysis is a table of Census Tracts that spatially overlap the MSA population totals with each cluster allowing for spatial commu
nication between the two datasets. In this output, only the Census Tracts that intersect with a cluster are included; Census Tracts that 
do not spatially overlap with a multi-hazard cluster are not included in the output to avoid their population values from contributing to 
the overall result. From here, we overlay the Census Tracts that contain the intersected cluster information to assign the respective 
MSA to each Census Tract. We next calculate the percent population exposed (i.e. % population exposed) by dividing the total multi- 
hazard population exposed (i.e. multi-hazard risk population) by the entire population for each MSA (i.e. MSA total population) and 
multiply by 100 for the percentage using Equation (2): 

Fig. 4. Tmax July annual average difference from the July 20th century average, measured in degree C. The gray area represents the 95 % con
fidence interval for the linear regression line.
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% population exposed=multi − hazard risk population within the MSA / MSA total population x 100 (2) 

The three resulting outputs are combined into a single file format to assess the percentage of population exposed to each multiple 
hazard across each of the 26 MSAs.

4. Results

4.1. Each hazard displays increasing trends exceeding long-term average

To illustrate how Tmax, PDSI, and wildfire burn area changes throughout the study period, we use the long-term average for each 
variable as the baseline and take the difference for each annual average from 1981 to 2022. We take the difference from long-term 
average to indicate whether a given year in the study was higher or lower in value, allowing for further analysis of each variable’s 
trends.

As expected, Tmax is increasing over time in California (Fig. 4). The Tmax 20th-century average is 30.6 degrees C, with an annual 
increase rate to be 0.04 degrees C; from 1981 to 2022, there is a total increase of 1.56 degrees C. The overall trend shows a strong 
increase in the number of years exceeding the 20th-century average, especially seen in the difference of annual average values from 
2000 to present. The oscillation from annual averages measuring above and below the 20th-century average diminishes over time, 
more frequently measuring above the baseline. From 2000, there is a full decade where the annual average for Tmax exceeds the 20th- 
century average. On average, the state is becoming much warmer and experiencing fewer cooling periods for the month of July.

The results for PDSI follow similar trends to Tmax (Fig. 5). The PDSI annual averages are plotted based on the difference from the 
PDSI 40-year average (0.16), highlighting the difference in PDSI value above or below the baseline. The regression line shows the 
annual decrease rate is 0.05, resulting in a total decrease of 2.1 in PDSI value. Following similar trends to Tmax, PDSI shows an overall 
increase in the number of years measuring below the 40-year average, indicating worsening drought conditions over time. From 2000, 
we again see a diminishing oscillation of yearly averages recording above and below as a majority of the years record lower than the 
baseline average. PDSI wet soil conditions are decreasing for the month of July across the study period.

We plot the difference of the percent burn area annual averages of wildfires for July in comparison to the 20th-century average at 
0.02 % (Fig. 6). The regression line shows the annual increase rate is 0.04 %, resulting in a total increase of 1.6 % for the study period. 
In comparison to the annual average trends of Tmax and PDSI, wildfire burn area shows a drastic increase. In the two decades, only six 
annual averages were recorded below the 20th-century average while the majority of annual averages are far above the baseline. 
Specifically, July of 2021 experienced a severe spike in the percentage of acres burned, totaling 1.7 million acres. This is equivalent to 
the size of Santa Barbara County.

4.2. Hotspots of individual hazards

The spatial analysis reveals the hotspots, pixels that have frequently high values, for Tmax, PDSI, and wildfire burn areas across 
California (Fig. 7). For each variable, the gradient from light to dark represents the amount percent of time a pixel was a significant 

Fig. 5. PDSI July annual average difference from the July 40-year average. The gray area represents the 95 % confidence interval for the linear 
regression line.
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hotspot from 1981 to 2022.
The hotspots for Tmax are primarily located throughout the Mojave desert (located in southeastern California), Central Valley, and 

northern California. The hotspots located across California’s deserts are expected due to these regions having characteristics of high 
temperatures and low precipitation to mitigate the high temperatures. In the study period, much of Central Valley and parts of 
northern California have experienced statistically high values 56–75 % of the time. Surprisingly, there is a lack of hotspots in highly 
dense urban areas, including the south and central coasts, that are experiencing extreme temperatures [6]. This result, along with the 
rest of the coast, is most likely attributed to the cooler temperatures from marine influence [8].

Almost the entire state experienced PDSI hotspots for at least 20 % from 1981 to 2022. Drought exhibits high hotspots primarily in 
northern California, central California, and along the central to southern coastal regions. The north-central region experienced drought 
conditions for 50 % of the study period.

The presence of wildfires ranges across the entire study area with notable concentrations in the mountainous regions in northern 
California, border of Central Valley, and interior central to southern coast. The MSAs with the highest percent recurrence of wildfires 
are San Francisco with 26 %, Bakersfield with 24 %, and Stockton and Riverside-San Bernardino-Ontario with 19 %. As expected, the 
wildfire trends are almost all located in areas with high drought and mountainous areas.

Fig. 6. Wildfire burn area July annual average difference from the July 20th-century average, measured in acres. The gray area represents the 95 % 
confidence interval for the linear regression line.

Fig. 7. Pixel frequency as a hotspot from 1981 to 2022 across California for temperature, drought, and wildfires. Gray areas within the study area 
boundary indicate regions without hazard hotspots.
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4.3. Spatial assessment of multiple hazards

The multivariate cluster analysis displays three clusters of multiple hazards across the state (Fig. 8). Each cluster is composed of 
pixels that frequently experience high values. The red cluster represents high temperature, drought, and wildfire occurrence. This 
cluster is dispersed across the state and appears in the mountainous areas in northern California, border of Central Valley, and the 
interior southern coast. The orange cluster includes high drought and high wildfire occurrence-follow an almost identical trend to 
temperature, drought, and wildfires but encompass more area across the state. The patterns of the red and orange clusters follow along 
California’s hills and mountains ranges which makes sense as the steeper the slope, the faster the fires spread [2]. The yellow clusters 
are areas of high temperature and medium drought which are located predominantly across Central Valley and southeast regions that 
border the Mojave desert. As expected, the coastlines do not experience high heat relative to the inland locations, however, this does 
not dismiss coastal locations as experiencing higher temperatures. These results enable a deeper assessment of the spatial relationships 
between high-value hazard occurrences within the California MSAs.

4.4. Each MSA has experienced one or more multiple hazard events in the past 40 years

Each MSA in California has experienced a multiple hazard event between 1981 and 2022 with many of these areas experiencing two 
or more types of multiple hazards (Fig. 9). The percentages in this figure represent the percent of land exposed to a multiple hazard 
event and the total land in the MSA; for example, over 40 years, 69 % of Bakersfield total land has been exposed to at least one multi- 
hazard type event. The high temperature, drought, and multi-hazard wildfires show a high percent land exposure along the central to 
southern coastline MSAs. The high drought and wildfire multi-hazard again follow a similar pattern to high temperature, drought, and 
wildfires multi-hazard, showing high percent land exposure in the central to southern coast MSAs. In addition, Central Valley MSAs 
have high percentages of high drought and wildfire multi-hazard events. The high temperature and medium drought multi-hazard 
displays notably high percent land exposure in varying MSA locations across the state. Taking a closer look at specific MSAs, 
Bakersfield has surprisingly high land exposure (69 %) while Riverside has relatively medium land exposure (35 %). These two MSAs 
will be further analyzed in the context of population exposure.

Fig. 8. Multiple hazard hotspots showing locations that have experienced three variations of multiple hazards: 1) high temperatures, drought, and 
wildfire, 2) high drought and wildfire, and 3) high temperatures and medium drought. Gray areas within the study area boundary indicate regions 
without multiple hazard hotspots.
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4.5. Population exposure in California’s MSAs

To assess population exposure, we selected MSAs that experience each type of multiple hazard cluster (which includes 15 out of the 
26 total MSAs) to understand which cluster has the greatest impact to public health and safety. The primary y-axis shows percent of 
population is represented by the individual clusters while the secondary y-axis represents the count of population exposed to all 
multiple hazard clusters in the millions (Fig. 10). The MSAs are arranged in order from highest to least count of population exposed.

Similar to land exposure, Riverside exhibits relatively medium percentages of population exposure to each type of multiple hazards, 
all under 30 % of the total population. However, the total number of populations exposed surpasses that of all other MSAs. In contrast, 
Bakersfield shows a higher percentage of population exposed with a comparatively lower number of people affected, just under 1 

Fig. 9. Percent land cover exposed to each type of multiple hazard per MSA in California for the base month of July from 1981 to 2022. The primary 
y-axis shows percent of land cover exposed to each multi-hazard type. The MSAs are arranged in order from highest to least count of popula
tion exposed.

Fig. 10. The percent of population exposed to each type of multiple hazards with the total population count exposed in millions along the dual axis 
per MSA for the base month of July from 1981 to 2022.
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million. In examining the exposure of multiple hazards on MSAs, we find that Riverside and Bakersfield demonstrate contrasting 
dynamics in population exposure and land cover exposure. When assessing the exposure of urban areas to multiple hazards, it becomes 
evident that both the percentage of population exposure and the total number of affected individuals are crucial factors to consider.

5. Discussion

5.1. Increasing temporal trends

Our analysis of July from 1981 to 2022 reveals consistent upward trends across temperature, drought, and wildfires. Comparing the 
annual means with long-term averages exposes a notable increase across the study period. Since 2000, California has experienced more 
consecutive years above the long-term averages for temperature, drought and wildfires. Reoccurring extreme events reduces the ability 
for urban systems to recover. Temperature and drought have similar gradual increasing trends while wildfires exhibit severe increases 
(Figs. 4 and 5). Although 2021 stands out as a significant year in this analysis, it is important to note that 2020 witnessed the most 
severe fire year on record with 4.3 million acres burned across the state (Fig. 6) [13]. For wildfires, this is especially striking as only 15 
% of wildfires in California occur from natural events, highlighting the relevance to anthropogenic impact on hazard occurrence [8]. 
Analyzing the temporal trends of temperature, drought, and wildfires provides insights into how hazards may be increasing in terms of 
their spatial extents, intensities, and/or frequencies. This analysis is crucial when considering the way a hazard evolves in their local 
area and helped to inform this study’s spatial assessment.

5.2. Distribution implications of individual hazards

The individual assessment of hazards using hotspot analysis enables us to identify the spatial distribution and frequency of these 
hazards across the state. Notably, northern California, the central valley, and the central to southern coastal areas for drought and 
wildfires experience the highest frequency of events (Fig. 7). However, the most unexpected finding from this analysis is the significant 
occurrence of fires in southern California. Despite recent notable wildfire events in this area, government agencies there are not fully 
incorporating the wildfire impacts on local populations compared to those in northern California due to lack of resources and 
stakeholder limitations [57].

Another surprising aspect is the spatial distribution of heat. More frequent occurrences of heat from the individual assessment are 
not found along the coastlines, despite notable increases. In Southern California’s coastal and rural areas, heatwaves have increased in 
frequency by 46 % and duration by 22 %, especially during drought conditions [33]. Drought affects the entire state, leading to major 
economic implications and, depending on future scenarios, will continue to impact agricultural communities and contribute to 
landscape degradation, fueling conditions for wildfires [32]. The correlation between drought and wildfire is very spatially aligned, 
highlighting specific areas that decision-makers need to focus on. As each hazard increases statewide and spatially overlaps, the 
potential for multiple hazard events rises, amplifying the probability of their occurrence and the significant damage they can cause. 
This spatial alignment of hazards, in addition to exposure and vulnerability from other research, points to the need for targeted in
terventions, to mitigate their impacts effectively [34].

5.3. Distribution implications of multiple hazards

The temporal and spatial analysis of individual hazards across California has provided valuable insights into the state’s vulnera
bility landscape, paving the way for a deeper understanding through multivariate cluster analysis. This analysis is crucial as it 
highlights both the exact locations and the percentage of time these areas experience various hazards, emphasizing the need to account 
for multiple hazards rather than just individual ones. For instance, understanding the locations of individual hazards alone misses the 
interconnectedness of events that collectively contribute to locations with high temperature, drought, and wildfire which is prevalent 
across the state (Fig. 8).

These hazards pose significant threats to public health, safety, infrastructure, and economic stability in urban areas [45]. The 
combination of high temperatures, drought, and wildfires not only increases the risk of cardiovascular health issues but also weakens 
infrastructure and disrupts economic activities [3,27]. The simultaneous impact of multiple hazards can overwhelm response systems, 
exacerbating challenges faced by communities and decreasing economic stability.

Events defined by significant drought and wildfire occurrences, follow very similar patterns to events with high temperature, 
drought, and wildfires. This is important for understanding the potential of high drought and wildfire events evolving with the 
presence of heat in the prevalent areas. Drought and wildfires present severe challenges to the local economy, particularly due to water 
shortages and land degradation. In 2021, wildfire and drought-related events resulted in a combined disaster cost between 10 and 20 
billion USD [40]. Prolonged drought conditions lead to water scarcity, affecting agriculture and residential consumption. Additionally, 
frequent wildfires damage infrastructure, cause property loss, and disrupt economic stability.

Moderate frequency events, characterized by high temperatures and medium drought occurrences, have similar implications for 
health, safety, and economic consequences related to water shortages. Despite the absence of wildfires, this combination still poses 
significant challenges for urban areas, underscoring the importance of assessing both land and population exposure to understand the 
full extent of vulnerability and prioritize mitigation efforts effectively.

Overall, the findings highlight the interconnected nature of multiple hazard events and their implications for urban vulnerability. 
Addressing these challenges requires proactive measures to enhance resilience and mitigate the impacts on communities and 
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economies across California. These insights are essential for enhancing community resilience, mitigating health risks, protecting 
economic stability, and supporting sustainable development, ultimately informing urban planning and policy decisions to better 
manage and reduce the risks associated with multiple hazards.

5.4. Importance of discerning land exposure versus population exposure

The comparison of land cover and population exposure across California’s MSAs offers valuable insights into the assessment of 
urban vulnerabilities in the face of multiple hazards. Specifically, when examining areas like Bakersfield and Riverside, significant 
disparities emerge between the percentage of land exposed versus the percentage of people exposed (Figs. 9 and 10). With this, 
Riverside experiences a higher population exposure from multiple hazards.

Urban vulnerabilities encompass a range of factors, including infrastructure resilience, human health and safety, and economic 
stability. In regions such as Bakersfield, known for its significance as an agricultural and energy production hub, high exposure of both 
land and population carries profound implications not only for local communities but also for broader regions across the nation reliant 
on their services.

This analysis demonstrates the critical importance of identifying and prioritizing areas that are affected by multiple hazards. By 
informing decisions regarding the allocation of funding for disaster management and sustainable planning and development, it enables 
proactive measures to enhance resilience and mitigate the impacts on urban areas and their broader socio-economic networks.

5.5. Limitations and future research

To our knowledge, this is the first study to analyze the multi-hazard clustering of extreme heat, drought, and temperatures with 
population exposure and land exposure assessments in California. Nevertheless, this study is not without its limitations. First, the 
methodology focused on the spatiotemporal co-occurrence of these hazards. We did not model the interacting physical processes 
among them or quantify their cascading effect—such as how prolonged drought conditions may later contribute to widespread 
wildfires [62,66]. Second, we did not incorporate vulnerability factors beyond population exposure in our risk assessment. Socio
economic variables, such as income, race, education, and immigration status, are well-documented risk factors that influence disaster 
impacts and recovery costs [20]. Third, urbanization is a key driver of both hazard occurrence and increased exposure, which we did 
not analyze in this study. For example, the urban heat island effect amplifies extreme heat in densely built environments, while 
expansion into the wildland-urban interface has increased wildfire risks [44,65]. Lastly, our analysis focuses on July data for each year 
and all variables in the study, emphasizing broader trends over short-term fluctuations to ensure consistency. While this approach may 
reduce accuracy in capturing short-term variations such as brief heatwaves or localized weather events, it prioritizes examining 
long-term patterns of wildfires, extreme heat, and drought conditions over the 40-year period. Future studies investigating the rela
tionship between urbanization and multi-hazard risk could inform climate-resilient urban planning strategies. This study identifies 
hotspots of multiple hazards across California and raises scientific questions for future research to better understand their drivers and 
impact.

6. Conclusion

This analysis utilizes spatiotemporal analysis to explore the spatial and temporal co-occurrence between temperature, drought, and 
wildfires in California. Leveraging high resolution datasets enables a detailed assessment to uncover trends for each variable, which 
proved invaluable for multiple hazard analyses. Historical data play a vital role in understanding the historical presence of these 
hazards and anticipating future impacts, as well as identifying previously unrecognized urban vulnerabilities. Understanding the 
percent of time of individual hazard occurrences, as well as multiple hazard events, is crucial for tracking potential changes that could 
lead to more drastic increases, as evidenced by California’s recent years with fires. By analyzing the temporal patterns of each hazard 
and their overlaps, we can gain insights into how their impacts are evolving over time. This information is essential for implementing 
better preparedness and response measures to mitigate the increasing risks associated with these hazards.

Repeated exposure to these hazards exacerbates risk and can lead to severe consequences, further amplifying vulnerabilities in 
urban systems. As impacts are expected to intensify, comprehending the spatial distribution of multiple hazard events is crucial for 
identifying and prioritizing sectors most at risk. This analysis highlights the complexities of land exposure versus population exposure 
to multiple hazards and underscores how the effects of different types of multiple hazards can impact urban vulnerabilities. When 
incorporating multiple hazards into risk assessments, it is important to understand the spatial relation, temporal relation, and the 
potential combined impacts to which exact vulnerabilities can be exacerbated by these hazards. This comprehensive understanding 
enables proactive measures to mitigate risks and enhance resilience in urban areas facing multiple hazards.
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Appendix 

A.1) California Population per sq. mile by Census Tract for 2020 [58]

A.2) Data Automation & Download

Downloading datasets with high spatial and temporal resolutions is a major challenge for spatiotemporal analyses. To compensate 
for this, data mining techniques are often used to detect large datasets [46]. We employ this technique in Google Earth Engine (GEE), a 
high-performance cloud-computing platform, with a wide variety of available datasets to examine spatiotemporal trends. The batch 
export function is used to automate the download of hundreds of images to be exported in bulk rather than one image at a time. From 
here, we download the daily resolution of Tmax (1271 images) and 5-day resolution of PDSI (205 images) for the base month of July 
from 1981 to 2022 for the entire state of California. Using the bulk download technique does not assign date and time information to 
output’s metadata. To remain organized, each image file name is output with their respective variable and date; for example, Tmax for 
July 1st, 1981 is tmax_19810701. These data mining techniques allow for a workflow of large, open-source image collection of finer 
temporal and spatial resolutions.
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A.3) Pre-processing of Vector Data

PRISM and gridMET image collections are in raster format while CAL FIRE’s Wildfire Perimeters are in vector format. Therefore, 
the wildfire dataset requires transformation from vector to raster format to be compatible with a space time cube analysis. Start dates 
in the base month of July are selected to solely account for wildfire activity beginning in this month. All 41 years are batch run through 
the Polygon-to-Raster tool. The value field is total burnt area in acres, the cell assignment type is cell center and the cell size uses one of 
the PRISM images to directly match ~4 km spatial resolution. The resulting 41 rasterized wildfire burn area images to allow for 
comparative analyses.

A.4) Multidimensional Processing

ArcGIS Pro has a suite of tools from the Space Time Pattern Mining toolbox that provide for temporal and spatial assessment of large 
datasets. The image collections of Tmax, PDSI, and wildfire undergo a series of transformations and analyses to achieve the toolbox’s 
required Network Common Data Form (netCDF) format. The Create Mosaic Raster tool draws from each image collection and combines 
the images into one layer file per variable. From here, we use the Build Multidimensional Raster Information tool, which embeds date 
and product information necessary for the program to relate the images to one another across time. This enables the resulting mosaic 
product to be run through the Make Multidimensional Raster Layer tool, which outputs three multidimensional raster products- Tmax, 
PDSI, and wildfire burn area. Using these raster products, we use the Create Space Time Cube from Multidimensional Raster Layer tool 
which arranges the products into the necessary netCDF format to run the Emerging Hotspot Analysis.

Data availability

Data will be made available on request.
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